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Abstract. Mathematical and computational modeling approaches have been applied to ev-
ery aspect of tumor growth from mutation acquisition and tumorigenesis to metastasis and
treatment response. In this article, we discuss some of the current mathematical trends in
the field and the exciting applications and challenges that lie ahead. In particular, we focus
on mathematical approaches that are able to address critical questions associated with tumor
initiation; angiogenesis and vascular tumor growth; and the new frontier of computer-aided,
patient-specific cancer evaluation and treatment.

1. INTRODUCTION. Cancer is the collective name given to an entire class of dis-
eases characterized by rapid, uncontrolled cell growth. There are over 200 different
types of cancer, each classified by the type of cell that is initially affected. Normally,
our bodies form new cells only as we need them. However, when cells acquire mu-
tations that disrupt the tightly controlled processes of cell division and death, a self-
sustaining wave of cellular multiplication can occur and result in the formation of a
tumor. To ensure its continued growth, a tumor must acquire a continuous supply of
nutrients and the ability to export metabolic waste. It does this by recruiting new blood
vessels from the nearby existing vasculature, a process known as tumor-induced an-
giogenesis. Angiogenesis provides the necessary blood supply for the growth of solid
tumors beyond a few millimeters in diameter. Tumors that remain relatively localized
in the tissue of origin and demonstrate limited growth are generally considered to be
benign. More dangerous malignant tumors form when cancer cells invade and destroy
healthy tissue and metastasize. Tumor cells using the blood or lymphatic system as a
highway to move throughout the body and form new malignant masses characterize
metastasis. See Figure 1 for a schematic representation of tumor progression, includ-
ing mutation acquisition, blood vessel formation, vascular tumor growth, invasion, and
metastasis.

It is estimated that in our country alone over 4500 new cancer cases are diagnosed
every day and that over half a million Americans will die from cancer this year [63].
Due to the inherent complexity of the many interconnected physiological processes in-
volved in tumor initiation and progression, on both the cellular and tissue levels, con-
ventional experimental approaches alone often fail to provide complete understanding
of cancer. Given the multiscaled pathophysiology involved, it is becoming more and
more important for cancer research to make use of a cross-disciplinary, complex, sys-
tems science approach in which mathematical models play a central role.

Existing mathematical models in oncology have employed a number of methodolo-
gies: continuous approaches, wherein molecules, cells, and/or tissue components are
assumed to have a continuous distribution; stochastic approaches that estimate proba-
bility distributions of potential cellular outcomes; discrete or hybrid models, in which
cells are modeled as individual agents and diffusible chemicals are modeled as a con-
tinuum; and cell-based formulations that explicitly incorporate different properties of AQ1
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Figure 1. A schematic of tumor initiation, angiogenesis, and invasion taken from http://www.

ndhealthfacts.org/wiki/Oncology. The figure shows the initiating genetic mutation, abnormal cellu-
lar growth (hyperplasia and dysplasia), early tumor growth in the absence of invasion (in situ cancer), followed
by angiogenesis, invasion, and metastasis.

individual cells in order to predict collective tissue behavior. The vast amount of clin-
ical data and basic science research produced today is allowing for the development
of new mathematical models that incorporate one or more of these approaches and
that have unprecedented depth, accuracy, and predictive power. Such models have the
potential to facilitate a deeper understanding of the cellular and molecular interactions
associated with tumor initiation, progression, and treatment. This article highlights
several mathematical modeling approaches in order to illustrate some of the emerging
trends in the field of mathematical oncology. In keeping with the natural progression
of tumorigenesis described above (initiation, angiogenesis, vascular tumor growth), in
the opening sections we feature mathematical approaches that address one of the oldest
and most important questions in oncology: How do tumors arise and what cellular and
molecular factors are most influential for cellular transformation and tumor initiation?
Once a tumor has formed, it must acquire a vascular supply. We therefore continue on
to spotlight how multiscale modeling can aid in understanding the critical steps that
follow tumor initiation, namely, tumor angiogenesis and vascular tumor growth. Vas-
cular tumors in individual patients are as different as we are as people; what works to
treat one person’s disease may completely fail in another patient. Therefore, in closing
we showcase promising successes in the newest frontier of cancer therapy: patient-
specific mathematical neuro-oncology.

2. ADVANCES IN MODELING TUMOR INITIATION AND CANCER STEM
CELLS. The question of the origins of cancer is among the most important in our
understanding of the disease. There is no universal answer to this question, as dif-
ferent cancers are initiated by different mechanisms. There are, however, certain pat-
terns that can be recognized. Among the most prominent ones are cancer initiation via
(1) an activation of oncogenes and (2) an inactivation of tumor suppressor genes and
also the recently described universal sequence of events for stem-cell-driven cancers.
Here we study these patterns by means of stochastic and deterministic evolutionary
models.

Concepts. Some mutations directly lead to the generation of advantageous mutants.
This is characteristic of the gain-of-function mutations (see, e.g., [66]) that activate
oncogenes, which are modified genes that increase the malignancy of a tumor cell.
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A loss-of-function mutation results in a gene product having less or no function.
Two independent loss-of-function mutations are necessary to inactivate a gene be-
cause, after the first mutation, the second copy of the gene is still active. In the context
of cancer, the loss-of-function mechanism is involved in the inactivation of tumor sup-
pressor genes, which are protective genes that normally limit the growth of tumors.

The Moran process is a useful tool to study oncogenesis, including oncogenes and
tumor suppressor genes, both analytically and numerically [43]. This stochastic, cell-
based model describes cellular turnover in constant populations. An elementary update
consists of a cell death (whereby the cell is chosen for death randomly with a uniform
probability), followed immediately by a cell division. To include competition, each cell
is equipped with a fitness parameter, and divisions happen with the probability propor-
tional to the cell fitness. Upon division, with a small fixed probability, a cell can mutate,
such that one of the daughter cells belongs to a different type (and thus may have a
different fitness). The number of elementary updates per time unit is proportional to
the total population size. Figure 2 shows the basic Moran process, which we call the
mass-action (complete mixing) model (a), as well as a spatial process, where repro-
duction happens in a cell’s neighborhood (b), and a hierarchical process, which keeps
track of stem cells and differentiated cells (c). The analytical results below pertain to
the mass-action process [30, 47], and generalizations for the spatial [16, 17, 27, 31]
and hierarchical [28, 32, 59] processes are available.

Figure 2. A schematic of one update of the Moran process (a) and two of its generalizations (b,c). (a) A
mass-action process, where the probabilities of divisions and deaths are independent of spatial locations; (b)
spatial Moran process in 2D; (c) the hierarchical model. Filled circles represent stem cells and empty circles
differentiated cells. Following a differentiated cell death, a differentiated cell divides (left), a stem cell divides
asymmetrically (middle), or two differentiated cell death events are balanced by two symmetric divisions of
stem cells, one proliferation event and one differentiation event (right).

Dynamics of gain- and loss-of-function mutations. Mathematical tools enable us to
gain analytical understanding of the complex dynamics of gain- and loss-of-function
mutations. Let us first study the behavior of one-hit mutants (cells of type “B”) that
originate from the wild-type cells (type “A”) with the mutation rate u1, in a population
of size N . We denote the relative fitness of the mutants as r ; type “B” cells can be clas-
sified as negatively selected, positively selected, or neutral mutants; see Table 1. There
are two very different dynamical regimes that are observed in this model depending on
the parameters:

• The two-state dynamics, Figure 3(a). For small populations (conditions in Table 1),
the system can be approximately described by (continuous time) stochastic tran-
sitions between two homogeneous states: the All-A state and the All-B state. The
probability to find the system in a mixed state containing both types of cells is
relatively low.

• Nearly-deterministic dynamics, Figure 3(b). For large populations, new mutants
are produced frequently, and accumulate in a nearly deterministic fashion. In this
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Table 1. Gain-of-function: definitions and conditions.

Types of mutant definitions conditions for the two-state process

Disadvantageous r < 1, |1 − r | � 1/N u1 N � r−(N−1)

Neutral |1 − r | � 1/N u1 N � 1
Advantageous r > 1, |1 − r | � 1/N u1 N � r

Figure 3. Gain-of-function: a schematic of the two types of behavior [77]. (a) A jump between the all-“A”
and the all-“B” states (well approximated by the Markovian jump presented as the ODE on the left). (b) The
nearly deterministic rise of mutants in the case of neutral or advantageous mutants. Disadvantageous mutants
do not reach fixation but are maintained at a selection-mutation balance. ρ is the probability of fixation of type
“B” starting from one cell.

regime, neutral mutants’ dynamics will resemble the behavior of advantageous mu-
tants because, in the absence of back-mutations, they will constantly grow in abun-
dance.

To describe the dynamics of loss-of-function mutations, we modify the Moran pro-
cess to include mutations from B to C with rate u2. Type C (double-hit) mutants are
assumed to be highly advantageous: Once this type is generated, it will invade the pop-
ulation with a high probability. Depending on the parameters, the dynamics of mutants
can be classified into three distinct regimes.

Figure 4. Loss-of-function: the three possible processes of two-hit mutant creation [77]. (a) The three-state
process. (b) Stochastic tunneling. (c) Nearly deterministic process.

• The three-state process, Figure 4(a), is similar to the two-state process of Figure
3(a) and is observed for relatively small populations (Table 2). The system is accu-
rately approximated by Markovian jumps between the All-A, All-B, and C states,
with A + B + C = 1: Ȧ = −Nu1ρ A, Ḃ = Nu1ρ A − Nu2 B, A(0) = 1, B(0) = 0.

• Stochastic tunneling, Figure 4(b), is the processes where the system goes from the
All-A state to the C state, skipping the intermediate fixation of type B. The concept
of stochastic tunneling was introduced by [30, 47]. With R the constant tunneling
rate, we can approximate the dynamics as Ȧ = −Nu1 R A, A(0) = 1.
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Table 2. Loss-of-function: definitions and conditions.

Type of mutant definition condition for the three-state process

Disadvantageous r < 1, |1 − r | � 1/N N | ln r | � ln
(

(1−r)2

r2u2

)

Neutral |1 − r | � 1/N N
√

u2 � 1
Advantageous r > 1, |1 − r | � 1/N Nu1 � r

• Nearly deterministic dynamics, Figure 4(c). For large populations (N � 1/u1),
mutants are constantly produced and steadily increase in abundance. The double-hit
mutant production happens accordingly, with the mean number of two-hit mutants
≈ 1 − exp(−Nu1u2r t2/2).

Applications. Mathematical models described above have applications that span sev-
eral different areas of oncology.

• The evolutionary dynamics of mutation generation and fixation is intimately con-
nected with the landmark cancer phenomena of chromosomal instability and mi-
crosatellite instability. These are characterized by an increased rate of genetic
changes in cells. One can argue under what circumstances the instability is an ini-
tiating and causal effect of cancer and when it is a consequence of other molecular
events [26, 33, 47].

• Understanding the dynamics of tumor suppressor genes allows deeper understand-
ing of the causes of many familial disorders, such as the Lynch syndrome and fa-
milial adenomatous polyposis (FAP) [29, 34].

• The initial steps in carcinogenesis are usually the ones that take the longest, and
therefore, their signature is apparent in the population-level epidemiological data
on cancer. Models of the type described here are used to relate the molecular in
vivo processes of cancer initiation with the shape of age incidence curves [40, 42].

• Studying the turnover in stem cell compartments and the homeostatic control in the
context of the hazard of mutant generation allows us to reason about the protective
role of epithelial tissue architecture, which may in part be in place to delay the onset
of deadly cancers [59].

Dynamics of stem-cell-driven cancers. The nature of the mutations that cells need to
accumulate to initiate cancerous growth vary from one type of cancer to another. Some
cancers have been identified as stem-cell driven, such as breast cancer [1], glioblas-
toma [75], and hemotopoietic cancers [48]; see also [13] for a critical review. It has
been proposed that for stem-cell-driven cancers, a common crucial event is the escape
from feedback loop mechanisms that prevent uncontrolled proliferation in healthy tis-
sues and maintain tissue homeostasis. The following model [55] describes stem cells,
S, which have unlimited reproductive potential, and differentiated cells, D, that even-
tually die:

Ṡ = (2p(D) − 1) v(D) S, Ḋ = 2(1 − p(D)) v(D) S − d D.

Stem cells divide at a rate v producing two stem cells with probability p or two dif-
ferentiated cells with probability (1 − p). Differentiated cells die at a rate d and pro-
duce factors that inhibit self-renewal and division in stem cells. The feedback loops
are incorporated in the rate of cell division, v(D), and the probability of self-renewal,
p(D), being general decreasing functions of D. To study the evolutionary dynamics of
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feedback escape, we consider mutations that confer the lack of production of differen-
tiation or division signals by the differentiated cells (we call these Ddi f f and Ddiv,
respectively), and also mutations that confer the lack of response by stem cells to the
differentiation or division regulating signals (mutations of type Sdi f f and Sdiv, re-
spectively). It turns out that out of all possible mutation pathways, including these four
mutation types, only one leads to uncontrolled cell growth: first the response to differ-
entiation then to division feedback is lost. The model suggests this to be a universal
pathway of feedback escape among stem-cell-driven cancers, although the nature and
number of mutation events to achieve this is certainly tissue specific. Different growth
patterns can result from feedback escape, which we call “inhibited,” “uninhibited,” and
“sigmoidal.” Interestingly, most growth patterns reported in the literature (both in vivo
and in vitro) belong to one of the categories predicted by our model [56]. Examples of
how observed tumor growth data (in vivo and in vitro) can be classified to one of the
predicted patterns by model fitting are shown in Figure 5.

Figure 5. Experimentally observed growth patterns and model fits. (a) Inhibited growth in Ehrlich’s ascites
tumor [35]. (b) Uninhibited growth in L1210, a mouse lymphocytic leukemia [58]. (c) Sigmoidal growth in the
nonspatial model: Jurkat T cell, human leukemia [53].

To summarize so far, we have demonstrated how computational and mathematical
models can shed light onto early stages of tumor initiation and progression and inform
us of the crucial events leading to cancer development.

3. ADVANCES IN MODELING TUMOR ANGIOGENESIS. An accumulation
of mutations over time is required for cellular transformation and tumor initiation.
These damaged cells replicate uncontrollably, eventually creating a tumor. To ensure
continued growth, a tumor must acquire a sustainable supply of nutrients, and this is
accomplished by recruiting new blood vessels from the nearby existing vasculature. A
recent advancement in cancer treatment has been combining traditional chemothera-
peutic agents with drugs that interfere with a tumor’s ability to stimulate blood vessel
formation. In the following section, we explore mathematical models of tumor-induced
blood vessel formation and related treatment strategies.

Concepts. Angiogenesis is the formation of new blood vessels from pre-existing ones.
Initiation of angiogenesis is a critical bifurcation point in tumor progression as it marks
the pivotal transition from diffusion-dependent tumor growth to vascular growth, a
more progressive and potentially fatal stage of the disease. The angiogenic cascade is
an extremely complex, yet well-ordered, series of events involving cells that line the
inner surface of blood vessel walls. To initiate angiogenesis when oxygen is scarce,
tumor cells release a wide variety of angiogenic factors that stimulate blood vessel cell
activation, survival, proliferation, migration, and maturation (see Figure 6). Mathemat-
ical models of angiogenesis include blood vessel cells and the chemicals that stimulate
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and stabilize them as they grow toward a tumor and create an intricate new vascular
network. Such models can help to answer questions like: What factors influence the
distribution of cells with different behaviors in a developing sprout (quiescent cell, pro-
liferating cell, migrating tip cell) and how can this dynamic variation be characterized?
How do tip cells polarize in response to chemical gradients? How do blood vessel cells
integrate the various biochemical and biomechanical cues they receive from a variety
of sources in order to decide when/where to move? How do tissue properties affect
angiogenesis and help to determine network structure?

Figure 6. An illustration of early events in angiogenesis taken from [9]: Biochemically mediated endothelial
cell activation and subsequent migration and invasion into the stroma led by tip cells extending protrusions,
cell division, and endothelial cell interaction with tissue fibers. VEGF is vascular endothelial growth factor,
the best characterized tumor angiogenic factor and M is the extracellular matrix or tissue fibers.

Mathematical modeling approaches. In the early stages of angiogenesis, recruit-
ment of new blood vessel cells from a nearby parent vessel is the dominant mech-
anism for sprout extension [4, 57]. Subsequently, proliferation of cells in the devel-
oping sprout is essential for further spout development. Without proliferation, only a
restricted sprout network is formed and eventually regresses [60, 61, 62]. Although
the processes associated with tumor angiogenesis are the subject of many mathe-
matical and computational investigations, few mathematical approaches, including
[2, 3, 5, 12, 11, 36, 37, 38, 49, 50, 51, 65], are able to capture this simple, but criti-
cal, experimental observation. A detailed review of many existing tumor angiogenesis
models and their limitations is provided in [41]. The key to resolving this problem is
to derive correct relationships between cell proliferation, sprout extension, and ves-
sel maturation, based on experiments. In order to untangle some of the complexities
of tumor angiogenesis and in hopes of manipulating new knowledge for therapeutic
gain, new mathematical modeling frameworks that operate at the molecular and cellu-
lar level must be developed [9, 10, 23, 24, 25]. This is critical because it is precisely
this level of detail that is necessary to accurately predict the therapeutic potential of
novel molecular targets aimed at angiogenesis.

One way to do this is to adopt a cell-based approach that integrates the mechanical
aspects of cell elongation with a biochemical model of dynamic variation in cellular
behaviors. This type of approach is used in [23], and there are many important features
of this angiogenesis model that are entirely new, including the derivation, from gen-
eral viscoelastic equations, of a force balance equation for tip cell elongation and the
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model mechanism for nonproliferative sprout extension. The computational domain
is a square, in which a tumor is represented by a disc with radius r . Angiogenic fac-
tors are produced by cells, and then they can diffuse, decay, and be taken up by cells.
These are continuous processes, and therefore they are modeled by partial differential
equations (PDEs). Newly forming vascular sprouts are divided into two parts: a tip
cell and stalk cells. Each stalk cell grows, and once its mass is doubled, it divides into
two equal-mass daughter cells, which will redistribute in space. This phenomenon is
almost impossible to capture using a continuous model. Therefore, discrete points are
used to track all of the cells in the vessel, and on each discrete point (one cell) of the
vessel stalk, a time-continuous mass density and local mature cell mass fraction are
assigned and modeled using PDEs.

In this way, the model is a hybrid formulation containing both continuous (diffusion
of chemicals) and discrete (cells) components. A cell-based approach is also employed
as the tip cell is modeled as a spring-dashpot system [39, 40], which is a common
approach in mechanics used to describe the elastic and viscous components of the
stress/stain response. Using this formulation, cells generate a protrusion force, F , so
that the elongation of the cell body, u, satisfies the force balance equation:

E A0

L0
u + μA0

L0

du

dt
+ β A1

du

dt
= K ◦ F. (1)

The first term is the elastic force of the spring followed by the internal viscous force
(the second term). The third term is the friction or drag on the contact surface with of
tissue fibers, and the last term, K ◦ F , is the chemotactic force. This equation can be
rigorously derived from the viscoelastic model with small deformation with variables
defined as follows: Youngs modulus E , viscosity μ, friction between ECs and tissue
fibers β, cross-sectional area A0 of the tip cell, initial length of the cell L0, and contact
area of cellular extensions with ECM A1. In multidimensional space, K is called a
conductivity tensor, and it accounts for contact guidance along tissue fibers.

The integrated model combines the migration, proliferation, and maturation pro-
cesses described above. Immediately after a cell divides, the new cells are round
in shape and easily deformed; therefore, under the chemotactic force, they will be
stretched toward the tip, which allows the tip cell to retract and migrate again. By
repeating this process, the sprout extends to the source of chemoattractant, and this
extension is tracked in time and space. This model is able to provide insights into
the relative impact of endothelial cell proliferation, migration, and maturation during
tumor angiogenesis. Validation was achieved by quantitatively comparing model pre-
dictions to data derived from corneal angiogenesis experiments (Figure 7) and was
used to investigate the effects of the X-ray irradiation, chemical inhibition, and extra-
cellular matrix anisotropy on sprout morphology and extension.

Applications. This modeling approach that captures the multiscale processes associ-
ated with angiogenesis at the molecular and cellular level can now be combined and
integrated with mathematical models for solid tumor growth like those developed in
[19, 64]. Such an integrative computational modeling framework will be able to mech-
anistically follow tumor progression from the avascular stage of growth through the
angiogenic switch to rapid vascular growth to therapeutic tumor reduction. There are
data available to calibrate and validate the computational predictions, and model out-
put can be directly compared to published experimental observations of tumor size,
weight vascular density following treatment with a variety of currently approved sin-
gle and multidrug strategies [15, 18, 39, 46, 73].
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Figure 7. Simulation of normal growth taken from [23]. (a) On day 4, there are 90 vessels with average
length 0.53 (=1.06mm). (b) On day 7, there are 227 vessels with average length 0.92 (=1.84mm). (c)&(d):
Experimental results on day 4 and 7 from [72]. Right panel (e)&(f): Quiescent level, which is a measure of cell
maturity. (g)&(h): chemical concentration along the sprout.

Figure 8. Simulations of vascular tumor growth from (a) [64] and (b) [19].

Once validated, this modeling approach will also be poised to investigate the effect AQ2
of novel molecular targets aimed at tumor angiogenesis. This is precisely the level of
detail that is necessary to accurately incorporate drug mechanism of action and predict
the therapeutic potential. For example, these models can be used to predict response
to therapeutic blockage of proteins associated with vessel maturation and cell survival
and can pinpoint the quantifiable differences in vascular composition of single-target
approaches versus multitarget therapies.

4. PATIENT-SPECIFIC MATHEMATICAL ONCOLOGY. Traversing the chasm
between biological discoveries and their clinical translation is a major challenge fac-
ing oncology. We believe that clinical translation of biomedical discoveries can be
enabled by using mathematical modeling as a bridge between cancer biology and clin-
ical oncology. Primary brain tumors known as gliomas are a particularly challenging
case as little improvement in outcomes has been seen in decades of study. While clin-
ical trials of treatment for gliomas have continued to focus on statistically defined
results in groups of similar patients, we have focused on trying to understand indi-
vidual cases by pioneering the field of patient-specific mathematical neuro-oncology
[6, 7, 8, 14, 21, 22, 44, 45, 54, 68, 69, 70, 71, 74]. Since routine clinical data on
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patients are limited, one has to carefully balance the biological detail captured by the
model, in the form of model complexity, with our ability to parameterize the model for
each patient. As such, we have developed and applied mathematical models of glioma
proliferation and invasion to generate simulations of untreated tumor growth for each
patient.

To reasonably calibrate these models to each patient’s tumor, we have focused on
models that can be informed by information routinely available to patients—clinical
imaging, usually in the form of magnetic resonance imaging (MRI). Since MRIs can
only resolve to roughly a cubic millimeter scale, which likely contains many thousands
of cells, it is important for our mathematical model to be on a similar scale-continuum
of cells. For this reason, much of our investigations has focused on minimal reaction-
diffusion continuum models of the form

change of tumor cell density︷︸︸︷
∂c

∂t
=

net dispersal of tumor cells︷ ︸︸ ︷
∇ · (D∇c) +

net proliferation of tumor cells︷ ︸︸ ︷
ρc

(
1 − c

K

)

where D is the net dispersal rate of the tumor cells c, ρ is the net proliferation rate of the
tumor cells, and K is the maximal carrying capacity of tumor cells the tissue can ac-
commodate. Although extensions to this base model formalism are actively used, this
simple model serves as an ideal base for investigating patient-specific tumor kinetics
observed on MRI. Specifically, to produce patient-specific virtual controls, we cali-
brate our tissue-scale models of tumor growth to routinely obtained clinical imaging,
primarily MRIs obtained prior to treatment. Specifically, calibration involves estimat-
ing the model parameters (D, ρ, etc.) for each patient. Here we highlight a series of
successes these modeling efforts have brought to the face of clinical decision making
for gliomas.

Predicting the invisible: Identifying the patients most likely to benefit from
extensive surgery. The standard-of-care for high-grade gliomas (HGGs) includes
resection of the enhancing component of the tumor visible on gadolinium-enhanced
T1-weighted MRI [67] yet imaging reveals only the tip of the iceberg of this disease.
That is, there is an unknown extent of diffusely invaded glioma cells even several
centimeters peripheral to the abnormality seen on imaging. Worse yet, the degree of
invasion is highly variable across patients. As a result of the variability of diffuse tu-
mor cell invasion (D) across patients, surgical interventions are led by a combination
of the clinically imageable extent of disease (bright region on the contrast-enhanced
T1-weighted MRI) and the eloquence (and therefore resectability) of the brain tissue
surrounding that imaging nodule.

Using our mathematical models for glioma proliferation and invasion, we have gen-
erated patient-specific simulations of the degree of diffuse invasion peripheral to the
imaging abnormality for HGGs. The top row of Figure 9 shows several slices of an
MRI of a patient with a fronto-temporal HGG whereas the bottom row shows the dif-
fuse extent predicted by the model (approximated by D/ρ) calibrated to this patient us-
ing calibration methods developed in [6, 7, 8, 14, 21, 22, 44, 45, 54, 68, 69, 70, 71, 74].
In a study of 250 HGGs [6], by ordering these tumors according to their patient-
specific degree of invasiveness, termed the invisibility index (D/ρ) [6, 7, 20, 71], we
were able to identify a subset of patients predicted to have a minimal extent of diffuse
invasion. Patients with these so-called nodular tumors, when treated with gross total
resection of the imageable nodule, experienced an average 8 months, or 75%, increase
in survival whereas the most diffuse tumors, received no measurable survival benefit.
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Figure 9. Top: Gadolinium-enhanced T1-weighted MRI showing a right fronto-temporal contrast-enhancing
lesion. Bottom: Patient-specific simulation showing diffuse invasion color coded for cell density with red
corresponding to high and blue low.

Combining our ability to estimate patient-specific invisibility index (D/ρ) with these
patient observations suggests an obvious clinical trial in which patients are stratified
according to their model-predicted diffuse extent to prospectively identify which pa-
tients will most benefit from significant surgical resection.

Optimizing radiation therapy to maximally benefit each patient. After resection,
essentially all high-grade glioma patients receive radiotherapy, yet, similar to resec-
tion, there is very little patient-specific tuning to optimize the therapy to maximally
benefit the patient. We have used patient-specific modeling as a means to provide al-
ternates to these one-size-fits-all radiation treatment design strategies. Specifically, by
incorporating a model for radiotherapy response (cell kill) into our patient-specific
model, we can capture the kinetics of radiotherapy response in individual patients [54].

change of tumor cell density︷︸︸︷
∂c

∂t
=

net dispersal︷ ︸︸ ︷
∇ · (D(x)∇c)+

net proliferation︷ ︸︸ ︷
ρc

(
1 − c

K

)
−

response to radiation︷ ︸︸ ︷
R(c, x, t)

Using this model and pretreatment MRIs, we are able to predict early postradiother-
apy imaging within a few millimeters of accuracy [54]. We further used this predic-
tive relationship in combination with multi-objective optimization to generate optimal
radiation schedules to increased predicted tumor response of 21% to 105% while de-
creasing radiation exposure to normal tissue by 67% to 93% [14, 22]. These results are
ripe for clinical trials to assess the benefit of these altered therapy plans in cohort of
glioma patients.

Quantifying treatment response using untreated virtual controls. Another major
clinical challenge facing gliomas is the lack of useful response metrics that connect
treatment response to survival and other outcomes. That is, there are few early signs
of treatment response that portend for ultimate benefit in terms of overall survival
[52, 76]. We recently developed a method to use patient-specific simulations of un-
treated tumor growth, tuned to each patients estimated D and ρ as a so-called virtual
control against which treatment response can be assessed. Simply by comparing post-
treatment imaging to the simulated prediction of the untreated virtual control, one can
assess the degree of tumor growth deflection as a result of treatment to generate novel
response metrics (Figure 10). Importantly, these virtual control-based response metrics
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are strong predictors of overall survival [44, 45]. We believe that these response met-
rics could be used across much of neuro-oncology to enable the early identification of
therapies that benefit individual patients with the major exception of antiangiogenics.

Figure 10. Patient-specific 4D simulation of tumor growth and progression shown in 3D brain outlines with
the mean model-predicted radius of the imageable lesion shown as a cyan curve evolving with time. The sizes
of the tumor on pre-treatment and post-treatment MRIs are shown as red circles showing that there was a 181
days of deflection of tumor growth from the untreated path (cyan) as a result of the intervening therapy. Image
adapted from [44].

Deconvolving tumor growth from imaging changes during treatment with
antiangiogenics. As is clear from the above, much of neuro-oncology relies on
clinical imaging, particularly contrast-enhancement and surrounding edema on dif-
ferent MRI modalities. Interestingly, contrast-enhancement is a result of leakage of a
contrast agent from angiogenic neovasculature in the tumor,which also allows leakage
of edematous liquid into the surrounding brain. Thus, not only does angiogenesis play
a critical role in tumor growth, it also plays a crucial role in our ability to image the
disease. This deep connection between tumor biology and imaging is further con-
founded when we treat with antiangiogenics such as Avastin (bevacizumab) where the
imaging signal can decrease as if the tumor was regressing when it may not be. To this
end, enabled by the excellent modeling work done on VEGF-mediated angiogenesis
by Jackson et al (above), we extended our glioma model to incorporate the generation
of edema to more directly reflect the imaging changes seen before and during antian-
giogenic therapy [21]. Figure 11 illustrates how simulations of this model allow one
to decouple changes in edema patterns on MRI from the actual tumor progression.
This allows for a direct appreciation of the complex relationship between imaging
and actual tumor extent that is directly targeted at the clinical challenge of interpret-
ing imaging changes with antiangiogenic therapy and identifying patients who will
maximally benefit.

5. THE FUTURE OF CANCER MODELING. We have described mathematical
and computational approaches that integrate biological data and imaging to answer
questions about tumor initiation, vascularization, and patient specific therapy. The fu-
ture of mathematical oncology promises innovations and new challenges in all of these
areas.
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Figure 11. Top: Simulated tumor growth (red as high cell density while blue is low) Bottom: Imageable
response to antiangiogenic therapy showing a significant imaging response while the tumor growth is unde-
tectably deflected. Image adapted from [21].

Stochastic evolutionary models of carcinogenesis are unique in a sense that they
combine a large degree of reductionism (the simplicity of the model setting) with a
high degree of analytical tractability, simultaneously providing insights into unknown
aspects of carcinogenesis. Starting from seminal works of Knudson and Moolgavkar,
models of this type have provided a window into the microscopic tumor dynamics,
when applied to population level data. Similarly to using epidemiological data, one
can infer underlying microscopic processes by directly comparing predicted model
behavior with observed tumor growth kinetics in vivo.

For example, by matching the observed growth data of stem-cell-driven tumors with
predicted patterns, we can gain insights about the nature of the evolutionary changes
that have occurred in the tumor under consideration. This, in turn, is part of a larger
concept, where analysis of cellular growth data can be used to infer the types of evo-
lutionary changes that have occurred in cancers, an idea recently proposed in [56].
Simplicity and complexity must strike the right balance in future modeling work. Us-
ing the basic evolutionary models such as the ones described here, one can try to build
in more and more biologically relevant details, without losing track of causality and
tractability of the system.

As with models of carcinogenesis, we are also on the verge of many exciting ad-
vances in modeling tumor angiogenesis and subsequent vascular tumor growth. Com-
putational modeling frameworks can mechanistically follow tumor progression from
the avascular stage of growth, through the angiogenic switch, to rapid vascular growth.
We expect the future to bring new approaches that accurately simulate angiogenesis-
dependent vascular tumor growth in greater detail than any current model in the liter-
ature. These models will be able to capture molecular, cellular and tissue level details,
which are crucial to addressing the therapeutic potential of molecular targets that are
yet to be discovered.

Ultimately, outcomes for all cancers are a product of tumor biology (growth) and
response to therapy. Since there is no practical means to define these variables in
isolation for an individual patient, the creation of a virtual tumor through application
of a well-described mathematical model provides an immediate means to investi-
gate the interplay of biology and response in outcomes. We believe that such models

November 2014] 13



can form the basis of a spectrum of clinical trials to improve outcomes for patients
battling cancer. As such, the field of mathematical oncology has the opportunity to
drive forward a completely new trajectory of precision treatment strategies for cancer
patients.
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