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Glioblastomamultiforme (GBM) is a class of primary brain tumours characterized by their ability to
rapidly proliferate and diffusely infiltrate surrounding brain tissue. The aggressive growth of GBM leads
to the development of regions of low oxygenation (hypoxia), which can be clinically assessed through
[18F]-fluoromisonidazole (FMISO) positron emission tomography (PET) imaging. Building upon the
success of our previous mathematical modelling efforts, we have expanded our model to include the tu-
mour microenvironment, specifically incorporating hypoxia, necrosis and angiogenesis. A pharmacoki-
netic model for the FMISO-PET tracer is applied at each spatial location throughout the brain and an
analytical simulator for the image acquisition and reconstruction methods is applied to the resultant tracer
activity map. The combination of our anatomical model with one for FMISO tracer dynamics and PET
image reconstruction is able to produce a patient-specific virtual PET image that reproduces the image
characteristics of the clinical PET scan as well as shows no statistical difference in the distribution of
hypoxia within the tumour. This work establishes proof of principle for a link between anatomical (mag-
netic resonance image [MRI]) and molecular (PET) imaging on a patient-specific basis as well as address
otherwise untenable questions in molecular imaging, such as determining the effect on tracer activity
from cellular density. Although further investigation is necessary to establish the predicitve value of this
technique, this unique tool provides a better dynamic understanding of the biological connection between
anatomical changes seen on MRI and biochemical activity seen on PET of GBMin vivo.

Keywords: Glioma; GBM; mathematical modelling; MRI; FMISO-PET; hypoxia.

1. Introduction

Glioblastoma multiforme (GBM) is a primary brain tumour characterized by excessive proliferation and
diffuse invasion of the brain parenchyma while remaining localized in the brain (Kleihueset al.,2002;
Louis et al., 2007). Although GBM patients receive extensive treatment including surgical resection,
radiotherapy and chemotherapy, these tumours prove to be uniformly fatal with a median survival of 11
months (Burnetet al.,2007). GBMs inevitably recur despite aggressive treatment due to the extensive
invasion of tumour cells invisible to medical imaging, which can vary from patient to patient. In addi-
tion to a poor prognosis, anatomical and metabolic traits of GBM manifest differently across patients,
suggesting that treatment could benefit from information on tumour growth dynamics on an individual
patient level. The process of interpreting clinical images for treatment planning is a relatively qualitative
process because of the lack of quantitative tools, making GBM an ideal medical condition for patient-
specific mathematical modelling. In this report, we demonstrate a proof-of-principle system that builds
upon previously established methods of GBM modelling, positron emission tomography (PET) radio-
tracer kinetics and PET imaging simulation to form an integrated method of generating a patient-specific
FMISO-PET simulation. This approach is both novel and clinically relevant because it provides a link
between anatomical (magnetic resonance image [MRI]) and molecular (PET) image modalities.

1.1 Patient-specific mathematical modelling of GBM: proliferation–invasion and proliferation-
invasion-hypoxia–necrosis–angiogenesis models

Patient-specific mathematical modelling of glioma growth and invasion began in the 1990s using crude
information regarding tumour volume provided by the patients’ computerized tomography (CT) images
(Tracquiet al., 1995). Since then, glioma modelling has developed to incorporate realistic heterogeneity
and anisotropy of the brain anatomy informed by routine MRIs (Harpoldet al.,2007;Jbabdiet al.,2005)
in the form of the proliferation–invasion (PI) model. This model quantifies glioma growth in terms of
net rates of proliferation (ρ) and invasion (D) and is represented as a reaction–diffusion equation as
follows:
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∂c

∂t
=

netdiffusion
︷ ︸︸ ︷
∇ ∙ (D (x) ∇c) +

net proliferation
︷ ︸︸ ︷

ρc
(
1 −

c

k

)
. (1)

In words, the rate of change of glioma cell density equals the sum of the net dispersal of glioma cells
and the net proliferation of glioma cells. This model, studied bySwansonet al. (2008) (Harpoldet al.,
2007), has proven to be an accurate predictor of anatomical changes that can be imaged by MRI in
individual patients (Wanget al., 2009;Szetoet al., 2009;Swansonet al., 2003,2008;Rockneet al.,
2009). Further, patient-specific PI model parameters for biological aggressiveness (D andρ) can be
estimated from routinely available pre-treatment MRIs (Harpoldet al., 2007). These patient-specific
proliferation and invasion kinetic rates are prognostic of survival (Wanget al., 2009) and response to
therapy (Swansonet al., 2003,2008;Rockneet al.,2009) in individual patients.

Although the PI model has been validated on both the population and patient-specific levels, it pro-
vides limited insight with regard to tumour activity at the molecular level. Despite the PI model’s focus
on macroscopic down-stream net behaviour of GBM, we have recently reported that the PI model-
defined metrics of biological aggressiveness (ρ/D) correlated closely with the tumour’s hypoxic burden
imageable on 18F-fluoromisonidazole (FMISO) PET in GBMSzetoet al. (2009). This connection sug-
gested a quantitative link between the dynamics of anatomical growth (seen on MRI) and the molecular
characteristics of the tumour (hypoxia imaged on FMISO-PET) thus providing a grounding upon which
to build a more sophisticated model that included molecular information regarding the tumour.

Our previous successes with the PI model combined with the need for more information on the
molecular level dynamics of tumour growth has led us to explore an expanded model, which we will
refer to as the proliferation-invasion-hypoxia–necrosis–angiogenesis (PIHNA) model (Swansonet al.,
2011). The PIHNA model characterizes GBM evolution by partitioning the malignant tumour cells into
subpopulations based on fundamental histological characteristics of GBM including normoxic GBM
cells, hypoxic GBM cells, necrotic tissue, neo-angiogenic vasculature and angiogenic factors ((5)–(10)).
The PIHNA model provides insight into the biological interplay of metabolic changes that take place
within and between cells, which can be validated through functional imaging, such as PET on a patient-
specific level. Here, we explore our ability to simulate maps of hypoxia using the PIHNA model to
compare with patient FMISO-PET images. However, to realistically compare model predictions with
clinical imaging data, we must incorporate the dynamic nature and implicit noise characteristics of PET
imaging in our virtual FMISO-PET images.

1.2 Simulating patient-specific FMISO-PET images

From a histological perspective, GBMs are characterized by central or focal necrosis and hypoxia,
which results from the rapid depletion of nutrients that corresponds with aberrant growth (Rajendran
et al.,2004;Fischeret al.,2005;Louis et al.,2007). In a clinical setting, hypoxia is measured in GBM
patientsin vivo using FMISO-PET. FMISO covalently binds to macromolecules within hypoxic cells
and remains sequestered within them (Vallabhajosula,2007). Our aim is to transform PIHNA model
predictions of tumour-induced hypoxia so that it can be directly compared with clinical FMISO-PET
data. To this end, we aim to construct a virtual FMISO-PET by simulating FMISO tracer dynamics
combining PIHNA-predicted hypoxia with a pharmacokinetic (PK) model together with clinical-scale
PET image acquisition and reconstruction algorithms.

In this investigation, we consider a patient with histologically diagnosed GBM for a comprehensive
assessment of our ability to predict hypoxic burden using anatomic information derived solely from pre-
treatment MRI characteristics using our PIHNA model. Figure1 provides an overview of this process.
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FIG. 1. Flow diagram outlining overall methodology for developing simulated FMISO-PETs. Boxes represent tangible inputs,
outputs and parameters. Ellipsoids correspond to different simulation andin silico processing steps. Grey boxes denote the three
major components derived from previous works in generating simulated FMISO-PET.

Using the BrainWeb atlas (Cocoscoet al., 1997), a virtual tumour is simulated using the PIHNA model
in two spatial dimensions using a point-source initial concentration of tumour cells until the simu-
lated tumour matched the size by area of the actual tumour observed on the patient’s T2-weighted MRI
(see Section2.4). To simulate an FMISO-PET scan, a PK model (Thorwarthet al.,2005;Wanget al.,
2009) was used to determine the activity of the FMISO tracer within the brain as it acts between the
vascular tissue and various tissue subpopulations of the brain over the time interval of virtual PET imag-
ing. Finally, a summed tracer activity map underwent image reconstruction using an analytic simulator,
(ASIM; Alessioet al.,2005), of the image acquisition and reconstruction procedures associated with the
tomograph when obtaining the actual patient FMISO-PET. The resultant simulated FMISO-PET image
is constructed to mimic the noise characteristics and acquisition artefacts representative of the actual
clinical FMISO-PET image for the patient.

2. Materials and methods

2.1 Numerical simulation of PIHNA model on 2D anatomically accurate brain domain

A fractional step method, also known as operator splitting, was utilized to implement the PIHNA model
on a 2D grid with cerebral spinal fluid (CSF), grey and white matter concentrations defined at each
grid point by the virtual brain atlas BrainWeb (Cocoscoet al., 1997). For a reaction–diffusion equation
of the form:ut (t) = D(u, x, t) + R(u, x, t), whereD represents the diffusion operator andR repre-
sents the reaction operator, the fractional step method allows the two operators to be treated separately.
Specifically, the conjugate gradient method was used for the diffusion operator and a two stage TR-
BDF2 method was used for the reaction terms along with Newton’s method for solving the non-linear
equations. The numerical time step (k) was chosen to meet numerical stability requirements, with the
spatial grid determined by the BrainWeb atlas resolution (dx = dy = 1mm). All methods were imple-
mented in MATLAB. PIHNA model simulations rely essentially upon two patient-specific parameters,
diffusion (Dc) and proliferation (ρ) since all other rates of diffusion, proliferation, conversion are ei-
ther taken from the literature or defined relative to the normoxic cell population. These characteristic
parameters are computed from their PI model equivalents shown in Table2 and Fig.8, which can be
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calculated using only two preoperative MRI observations (Harpoldet al., 2007;Szetoet al., 2009;Wang
et al.,2009) and then scaled to theD andρ domain of the PIHNA model.

2.2 PK model for FMISO tracer activity

In generating a simulated FMISO-PET, we considered a three-compartment PK model (Wanget al.,
2009) to define the FMISO tracer activity within each voxel of the virtual brain. Voxel resolution was
1 mm by 1 mm. Outputs from the PIHNA model describe the evolution of the different types of tumour
cell populations and brain tissue (c, h, v, n) within each voxel within a 2D plane of the virtual brain
over time. The PK model was used to simulate the injection, uptake, activity and washout of the FMISO
tracer. The three-compartment PK model was taken from literature (Wanget al., 2009) and is schemat-
ically illustrated in Fig.2. The first compartment (Vb) in the PK model represents the concentration of
FMISO delivered to a voxel of brain through the blood in the vascular compartment. The second com-
partment (A) represents the diffusing component of FMISO existing in the interstitial space between the
blood and brain tissue. The third compartment (B) represents the concentration of sequestered FMISO
within the brain tissue of the voxel, which is predominately determined by its concentration of hypoxic
tissue (Wanget al.,2009). Because the PK model for the tracer activity is not stiff, it was solved using
the ode23 routine in MATLAB, with a relative error tolerance of 10−3 and an absolute error tolerance
of 10−6. The final radiolabel kinetics solution described tracer concentration within each voxel for the
different tissue compartments over the span of 180 min after injection. Kinetic rates, derived from lit-
erature (Wanget al., 2009) and listed in Table1, determined how FMISO diffuses from vasculature
(compartmentVb) into tissue (compartmentA), and the rate at which FMISO tracer from compart-
mentA is metabolized and sequestered by hypoxic cell populations (compartmentB). A virtual FMISO

FIG. 2. PK model rate constants (k1, k2 andk3) characterize the FMISO kinetics between compartments:k1 specifies the rate of
tracer diffusion into tissue and interstitial space from the vasculature,k2 specifies the rate of tracer loss back to the vasculature and
k3 specifies the rate of FMISO sequestering by the voxel of brain tissue. Table1 outlines the various kinetic rates for the different
brain tissue types.

TABLE 1 Kinetic rates in PK model (Wang et al.,2009) for different tissue types defined by the PIHNA
model and BrainWebatlas

Constant Hypoxic tumour Necrotic tumour Normoxic tumour Normaltissue

k1 (min−1) 0.30 0.09 0.30 0.15
k2 (min−1) 0.45 0.15 0.45 0.20
k3 (min−1) 8 × 10−3 3 × 10−3 4 × 10−3 4 × 10−3
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TABLE 2 PIHNA model parameters with references. Patient-specific parameters Dc and ρ were cal-
culated from tumour volumes of two preoperative MRI, with velocity of radial expansion of 6.7
mm/year measured on T1Gd. To account for the differing rates of diffusion between grey and white
matter, the following relationship was applied to all diffusion coefficients in the PIHNA model
simulation: Dw = 10Dg

Parameter Definition Value Reference

Dc,Dh Max net rate of dispersal of
glioma cells

1.87 mm2/year Patient specific

ρ Max net rate of proliferation of
glioma cells

4.61/year Patient specific

K Carrying capacity of the tissue 2.39 × 108

cells/cm3
Assumingaverage cell radius of
10μm

γ Maximum rate of conversion of
hypoxic to normoxic (when vas-
cular density is high)

0.5 (1/day) A fast rate of hypoxic to nor-
moxic conversion in the presence
of sufficient vasculature

β Maximum rate of conversion of
normoxic to hypoxic (when no
vasculature available)

ρ/10 (1/day) Assumed to be proportional to
the metabolic rate of the glioma
cells (e.g.ρ)

αh Rateof hypoxic cell necrosis ρ/20 (1/day) Assumed to be proportional to
the metabolic rate of the glioma
cells (e.g.ρ)

Dv Randommotility of endothelial
cells

5 × 106

(cm2/day) Sherratt & Murray (1990);
Levineet al. (2001)

μ Maximal net proliferation rate of
endothelial cells

log(2)/15
(1/day) Xiu et al. (2006)

Da Diffusion of TAF (e.g., VEGF) 8.64 × 10−5

(cm2/day) Levineet al. (2001)

δc Rate of production of TAF by
normoxic cells

7.59 × 10−16

(μmol/cell/day)
Calibrated from Michaelis-
Menten term

δh Rateof production of TAF by hy-
poxic cells

1.43 × 10−12

(μmol/cell/day)
Calibrated from Michaelis–
Menten term

KM Michaelis–Mentenhalf-max of
response of ECs to angiogenic
factors

5.75 × 10−7

(μmol/cell/day) MacGabhann & Popel(2004)

Q TAF consumption per EC prolif-
eration

1 × 105

(molecules/cell)
Estimated from number of
VEGF receptors per cell, given
in Mac Gabhann & Popel(2004)

w TAF washout by vessels 2.17 × 10−6

(1/cell/day)
Set this so that the background
3% vessels washout TAF at the
same speed as the decay rate

αn Necrosiscontact death log(2)/50/(0.1*K)
(1/day)

Chose so that 10% necrosis gives
tissue a 50-day half-life.

λa TAF half-life log(2)/64
(1/min) Seriniet al. (2003)
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injection, determined directly by the actual dosage given to the patient was introduced into the vascular
tissue of the virtual patient brain. Directional blood flow through the brain and tumour was not modelled.
The PK model was solved at each voxel, with the rate of tracer diffusion and uptake determined by the
proportions of hypoxic tumour, normoxic tumour, necrotic tumour and normal brain cells at that location
(Table1). The result is a spatialtemporal map of tracer activity during the FMISO-PET imaging time-
frame, which was approximately 3 h. To generate a standardized uptake value (SUV) image to compare
with the clinical scan, the tracer activity map was summed from 120 to 140 min after injection, as done
in the clinic, and reconstructed using a filtered backprojection algorithm (see Section2.3).

Applying the PK model to each voxel of brain tissue resulted in a unique PK solution per voxel deter-
mined by the varying concentrations of tissue types predicted by the PIHNA model and the BrainWeb
atlas. The composition of tissue types adjusts the kinetic rate constants that characterize the FMISO
action within that particular voxel. For instance, a tissue voxel comprising of half normoxic and half
hypoxic cancer cells is assumed to have an intermediate PK behaviour with FMISO. The model is
solved for each voxel with a system of ordinary differential equations:

dA

dt
= k1Vb(t) − (k2 + k3)A, (2)

dB

dt
= k3A − k4B. (3)

Theblood activity of FMISO (Vb), was the forcing function of the compartmental model.Vb was fitted
to a typical patient FMISO blood activity curve seen from other studies and matched with the case study
patient’s total dosage during actual PET imaging (Bruehlmeieret al.,2004). To generate a virtual tracer
map that describes the total FMISO activity over time for each voxel, each compartment in the solution
was summed in the following manner:

tracer map=
v

K
Vb(t) +

(
1 −

v

K

)
(A(t) + B(t)). (4)

Thus,in generating the tracer map,Vb is scaled by the proportion of vasculature (v from the PIHNA
simulation) in the voxel (whereK is the tumour cell carrying capacity of the voxel) and compartments
A andB are scaled by the proportion of non-vascular tissue within the voxel

(
1 − v

K

)
.

2.3 Simulationof the PET imaging process

The PET imaging of the tracer distribution within the brain determined by the three-compartment PK
model was simulated with an ASIM (Comtatet al.,1999) that models the effects of attenuation, scattered
and random coincidences, detector blurring and photon counting noise. Other effects can be modelled
(e.g. detector efficiency variations) but were not in this case. Since ASIM is not a photon tracking
simulator (e.g. SimSET;Lewellenet al., 1998), it cannot exactly reproduce the biases found in PET
raw data after the corrections for photon scatter are applied, as these are scanner and object dependent.
Thus, data corrections that are exact in the mean were applied, which produced accurate statistical and
resolution properties in the simulated raw PET data. To model the patient raw data used for the case
study, the estimated tracer intensity was summed between 120 and 140 min post injection as is done
clinically at the University of Washington. This summed image was forward projected into essentially
noiseless PET raw data with a sampling corresponding to that of the GE Advance scanner used for the
patient study (Degradoet al., 1994). Detector blurring due to inter-crystal penetration and scattering
was applied based on measured point spread function data (Alessioet al., 2005). The effects of photon
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attenuationwere modelled and mean value of 30% scattered and random coincidences then added.
Poisson noise was then added based on a total of 2.5×106 coincidentphoton events per image slice.
Next, the noisy raw data were corrected accurately in the mean for attenuation and scattered and random
coincidences to remove the bias of these effects but leave characteristic noise in the data (Comtatet al.,
1999). Finally, the data were reconstructed into images using the filtered backprojection algorithm (Kak
& Slaney, 2001) with a Hanning window matched to that used for the patient images.

2.4 Image analysis

In order to comparatively study functional and anatomical imaging, spatial registration was performed
using PMOD to establish a common spatial coordinate system for each patient image set (FMISO-
PET, T1Gd and T2 MRI) relative to the BrainWeb atlas (Cocoscoet al., 1997; Kwan et al., 1996,
1999;Collins et al., 1998). After image registration, 2D tumour areas were computed for the patient
for both T1Gd and T2 MRI using a semi-automatic program developed in-house using tools available
within MATLAB ( Swansonet al.,2009). Following our previous work (Swansonet al.,2009), several
regions of interest were compared between clinical and virtual MRI and FMISO-PET images. Regions
of necrosis, denoted T0 were defined as the non-contrasting tumour core in the clinical T1Gd image or a
cell density of>99% the cell carrying capacity (K ) of the tissue in the PIHNA model output. The region
of T1Gd enhancement was defined as regions in the simulated tumour with cell density of>80% of the
tissue cell carrying capacity in the PIHNA model output. Similarly, the T2 region was defined as the
region of cell density>16% of the tissue cell carrying capacity. These cut-off values were determined
experimentally through previous work (Harpoldet al., 2007). An additional region, denoted T2 Buff.,
was defined as the T2 abnormality with the addition of a uniform 2 cm margin or ‘buffer’ around its
outermost edge for both clinical and simulated images. The T2 Buff. region was included because of its
use as a target region for radiation therapy (Rockneet al.,2009). To account for the differences in voxel
intensity between the clinical and the virtual FMISO, the simulated PET image was normalized to the
background voxel activity of the clinical PET by matching the voxel intensities of a region of interest
away from the tumour abnormality.

2.5 Case study

We consider a 43-year-old male patient diagnosed with a right fronto-temporal GBM. This patient
received two pre-operative imaging observations consisting of both T1-weighted, gadolinium-enhanced
and T2-weighted MRI in addition to a single FMISO-PET just prior to a subtotal resection of the bulk
tumour mass. The patient was subsequently treated with radiation and chemo therapies. The FMISO-
PET scan was performed on an GE Medical Systems Advance Tomograph (Waukesha, WI) operating in
2D high sensitivity mode with 35 imaging planes covering a 15-cm axial field of view (Degradoet al.,
1994) prior to treatment. All patient FMISO-PET images were reconstructed with a Hanning filter after
scatter correction, resulting in a reconstructed spatial resolution of∼12 mm (Degradoet al.,1994). Fur-
ther details of the MRI and PET imaging protocols are given byRajendranet al. (2003),Swansonet al.
(2009) and in Section2.4.

3. Results and discussion

The ability of our extended PIHNA model to produce patient-specific FMISO-PET images using only
serial MRIs as inputs supports our previous results and successes with our PI model of GBM growth in
modelling patient-specific tumour dynamics (Harpoldet al.,2007). As an indicator of tumour resistance
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to many forms of treatment (Rockwellet al., 2009), hypoxia is an important and defining characteristic
of GBM, and the impact a patient-specific predictive model could have on treatment planning is immense.
We have made every effort to apply our model to clinical situations and maximize their utility in such
circumstances.

3.1 PIHNA model output

Simulations of the PIHNA model result in continuous mappings of tumour cell concentration for nor-
moxic (c), hypoxic (h) and necrotic (n) cell populations as well as vasculature (v) and tumour angiogenic
factors (a). MRI regions of interest (T0, T1Gd and T2) were defined using tumour cell density thresh-
olds (Harpoldet al., 2007), where the total tumour cell population (T) includes normoxia, hypoxia,
vasularity and necrosis (T = n + h + c + v; Swansonet al., 2003;Harpoldet al., 2007). Plotting
these regions on the corresponding T1Gd- or T2-simulated BrainWeb MRI allows for direct compar-
isons of PIHNA model predictions with clinical images. Furthermore, the hypoxic cell density from the
PIHNA output is compared with the clinical FMISO-PET. Figure3 shows a summary comparison of
the PIHNA-derived tumour boundaries with the corresponding actual patient images. This demonstrates
capabilities of the PIHNA model to produce predictive patient-specific realizations of tumour growth
as visualized on clinical MRI. The hypoxia map shows the distribution of hypoxic tumour cells that
may give clinicians greater insight in deciding on the course of therapy. However, it is important to note
the PIHNA model predictions are still limited predominantly by the anatomical mismatch between the
BrainWeb human brain atlas used for simulation purposes and the patient’s actual brain geometry.

FIG. 3. Comparison of clinical MRI and FMISO-PET images with PIHNA simulated MRI regions and mapping of hypoxic
tumour cells. The virtual tumour was grown until the T2-weighted MRI area matched that of the actual patient’s. Simulated T1Gd
abnormality was defined by 80% of the total carrying capacity (Harpoldet al., 2007), shown in white with necrosis defined by
the necrotic cell population (n) shown in black. Simulated T2 MRI was defined as 16% of the carrying capacity and is shown in
white. A contour plot of hypoxic cell density (h) is shown, which informs the tracer activity model (PK) and simulated PET scan
(ASIM). BrainWeb atlas MRIs were used as a background for the simulated tumour images.
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While the MRI simulations can and have been validated by comparison with clinical MRI scans
(Szetoet al., 2009), the hypoxia mapping cannot be directly compared to clinical FMISO-PET due to
the lack of FMISO tracer kinetics and PET acquisition scatter in the PIHNA model output. In order to
generate a more robust virtual PET, we integrated hypoxia mapping from the PIHNA output with a PK
model and ASIM.

3.2 Simulated FMISO tracer activity

Using the PIHNA output of the different cell subpopulations, the PK model determined voxel-by-voxel
solutions for the kinetic action of FMISO. Each voxel is characterized by a different cell subpopulation
profile, depending on the outputs of the BrainWeb and PIHNA simulations. In the 2D image, modelling
PKs of the FMISO tracer allowed us to better map the regions that would sequester the tracer. For
example, if a voxel was 30% hypoxic and 70% normoxic, it would uptake less tracer than a region that
was 100% hypoxic and 0% normoxic. Further, areas of the brain not containing tumour would have
the FMISO tracer diffuse in and diffuse out without localization. Clinically, a static summed imaged of
the FMISO-PET is utilized for detection of hypoxia, where the summed image is taken by integrating
the amount of tracer in voxels from 120 to 140 min post injection of the tracer. We followed a simi-
lar protocol to generate the virtual FMISO by integrating the FMISO tracer activity from 120 to 140
min post virtual injection (Fig.4). Representative voxels were chosen in normal (Fig.4, top right) and
hypoxic (Fig.4, bottom right) brain regions to display the differences in tracer kinetics. Kinetics within
the hypoxic tissue show faster uptake of tracer due to increased vascularity, as expected from the angio-
genic cascade. This leads to a more pronounced effect ofVb in hypoxic tissue with greater diffusivity
of the tracer and sequestering of FMISO as compared to the kinetics of a voxel within normal brain
region. Sequestering of FMISO is expected in the hypoxic regions due to the hypoxic cells’ higher affin-
ity for the tracer as modelled by equations governing compartmentB ((2) and (3)). Tracer activity in

FIG. 4. Summed FMISO tracer activity curves with representative voxels from normal brain tissue and hypoxic tumour regions
outside and within the tumour region, respectively, shown from 0 to 30 min post injection. Although the summed image is
generated from tracer activity in the voxel 120–140 min. post injection, the tracer dynamics are visually more evident at earlier
time points.
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the skin and CSF was added after the voxel kinetic modelling at relative intensity levels that approx-
imated clinical scans. Modelling the tracer kinetics within the CSF and skin was beyond the scope of
this work.

After applying the PK model to each voxel of the PIHNA output, we applied ASIM to the summed
tracer map in order to mirror PET acquisition, producing an image that can be directly compared with the
corresponding clinical FMISO-PET (Fig.5). Radial streaking artefacts characteristic of filtered back-
projection image reconstruction are visible in the simulated acquisitions (Fig.5), comparable with those
found in the clinical scans (Figs.3 and5).

In clinical FMISO-PETs, the intensity of the FMISO tracer indicated hypoxic activity. However,
a higher intensity can indicate either more cells that can be denoted hypoxic, a group of cells that has
a higher relative hypoxia than neighbouring cells or a combination of both. There is no established
mapping of hypoxic cell density to FMISO tracer intensity. In order to compare the original PIHNA
model output of hypoxia in cells/cc of tissue to FMISO tracer intensity, the voxel intensity was scaled
after applying the PK model and ASIM to the average background brain signal in the clinical FMISO-
PET. This allows for the comparison between hypoxic cell density and virtual FMISO tracer activity.
Finally, the virtual FMISO-PET can be qualitatively and quantitatively compared with the real FMISO-
PET (Fig.5).

To a casual observer, while the morphological differences between the clinical and simulated images
may seem significant, the limitation of the model to represent the actual tumour shape stems from the
inherent differences between neuroanatomy of the patient and that of the BrainWeb idealized brain
phantom. As the tumour grows, various parts of the brain anatomy put pressure on the tumour and de-
forms it, which has yet to be accounted for in the PIHNA model. However, the novel concept presented
in this work is the methodology to predict patient-specific FMISO distribution relative to MRI-defined
regions of interest. By first building the connection between gross tumour shape viewable under MRI and
metabolic information offered through FMISO-PET, potential new avenues for interpreting MRI/PET
images and simulation of treatment plan outcomes are established. Overall, this is an integrated sys-
tem to produce a virtual FMISO-PET image with image acquisition and reconstruction techniques that
are taken directly from clinical methods. This method then allows for validating mathematical models
of biochemical activity in human tumours by directly translating model results to clinically relevant
formats.

FIG. 5. Simulated FMISO-PET image produced using ASIM from PHINA model-predicted distribution of hypoxia (Fig.3 top
right) compared to the patient’s actual clinical FMISO-PET. Intensity was measured in SUV units.
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3.3 Comparing regions of actual and simulated hypoxia

In order to compare the tumour tracer activity profile of clinical and simulated FMISO-PET, 1D radial
plots were generated by choosing a representative line segment originating at the centre of the tumour
and ending at the edge of the T2-Buff region of interest (Fig.6). The insets in Fig.6 show the line
segment chosen in both the real (Fig.6a) and simulated (Fig.6b) case. These line segments spanned
MRI-defined regions, including T0, T1Gd, T2 and T2-Buff, to obtain plots of FMISO intensity and
distinguish regions of peak tracer activity relative to the MRI-defined regions of interest. The maximum
FMISO activity lies within the T1Gd region for both the clinical patient PET and the PIHNA/ASIM-
generated virtual PET, which is consistent with results from a previous study (Swansonet al.,2009).

To assess the overall distribution of hypoxia and tracer accumulation in the actual FMISO-PET and
simulated FMISO-PET relative to the MRI-defined regions of interest, we compared histograms of voxel
intensity. The distributions were compared for regions of interest that included: the entire PET field of
view, head (Fig.7), T2-Buff., T2, T1Gd and T0 regions. Voxel intensity histograms showed statistically
significant agreement between simulated and actual images for all regions of interest. A two-sample
Kolomogorov–Smirnov (K–S) test was used to quantitatively assess the differences in distributions of
the clinical and simulated FMISO-PET images within the different regions of interest. The null hypoth-
esis for the K–S test was that the two distributions were sampled from the same population and the
alternative hypothesis was that the two distributions were from two statistically different populations.
The null hypotheses could not be rejected in any of the comparisons within the regions of interest using
a significance level of 0.05. Figure7 shows the distribution matching of real and simulated voxel values
for the entire head space which passed the K–S test with ap value of 0.975.

Further, comparisons of the FMISO intensity regions in all the MRI-defined regions (T0, T1Gd,
T2 and T2-Buff) showed similar results. This result suggests that the relationship between FMISO-
tracer distribution relative to MRI-defined regions of interest can be described by the sim-FMISO-PET
potentially providing a tool for further understanding and interpreting hypoxia and other FMISO-based
information through sequential MRI scans. This method is a first step towards establishing and quanti-
fying the relationship between anatomical (MRI) and functional (FMISO-PET) imaging techniques in
human gliomasin vivo, which may provide greater insight to the patient disease state than either imaging
modality can provide alone.

FIG. 6. Comparison of 1D profiles of FMISO activity of both simulated and clinical FMISO-PET images. Insets show the orien-
tation of the 1D profile within the 2D field of view as well as the boundaries of MRI-defined regions of interest.
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FIG. 7. Histograms of real compared to simulated FMISO-PET voxel intensities within the simulation domain (head space).
Kolmogorov-Smirnov (K-S) test determined that the null hypothesis that the two distributions are not the same could not be
rejected with 97.5% certainty. Negative voxel intensity indicates noise related to the imaging process.

FIG. 8. A one-to-one mapping exists for the patient-specific estimates ofDPI andρPI associated with the PI model derived from
serial pre-treatment MRIs and the patient-specific estimates ofDPIHNA andρPIHNA to be used in the PIHNA model simulations
to generate the dynamics seen on the patients MRIs.

3.4 Clinical implications for virtual FMISO-PET images

The ability to produce patient-specific predictive FMISO-PET images based on measured MR images
would provide quantitative anatomic, molecular and cellular information that would aid in our under-
standing of the spatiotemporal dynamics of tumour growth. Specifically, hypoxia is an indicator of
tumour resistance to many forms of treatment (Rockwellet al.,2009). An accurate and predictive map
of tumour hypoxia may allow clinicians to use more quantitative and systematic methods, compared
to the relatively qualitative techniques currently used in treating patients, to improve patient survival
and quality of life. Further, such a predictive tool provides novel dynamic insight into the connection
between tumour cell phenotype, measured in terms of net rates of proliferation and invasion, and the
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spatiotemporalpattern of molecular changes seen in these tumour giving insight into the dynamics of
tumours otherwise unavailable using standard experimental and clinical investigative means.

Although we have already shown that there is a strong connection between biological aggressiveness
(D andρ) assessed from serial MRIs and hypoxic burden assessed on FMISO-PET (Szetoet al.,2009),
this work serves as a further validation of the connection between our anatomic PI model based on
gross tumour dynamics and net downstream behaviours and molecular activity in tumours. In other
words, this set of patient-specific models (PI and PIHNA) can be used to provide unique insight into
the connection between changes in the molecular activity of tumours and the biological aggressiveness
of that tumour imaged as changes on serial MRI. Current analysis of human FMISO-PET images relies
on the relatively arbitrary choice of a single intensity threshold to differentiate regions of hypoxia from
the rest of the brain. However, it is likely that this fixed cutoff neglects significant information in the
FMISO-PET image.

This work provides a proof of principle for a tool for quantifying the information that is lost as
a function of the imaging process, thus allowing for the design of more sophisticated image acquisition
and reconstruction techniques. Further evaluations are needed to determine how accurately simulation
results quantitatively predict clinical PET imaging data. Furthermore, this work allows for the improved
interpretation of patient images and provides a way of exploring unanswered biological questionsin
silico, such as differentiating intensity of FMISO activity versus the density of hypoxic cells. Ulti-
mately, this approach creates a path for better understanding of not only the biology of brain tumours by
elucidating the connection between MRI-based abnormalities and molecular activity presented on PET
imaging but also reveal their limitations.

4. Conclusions

The results of this study indicate that a spatial model for angiogeneiss in gliomas (PIHNA) combined
with a PK model for FMISO activity and PET image reconstruction techniques (ASIM) were able to
operate together to produce realistic MRI and FMISO-PET simulations. A two-sample Kolmogorov-
Smirnov (K-S) statistical test verified that there was no statistically significant difference in the distribu-
tions of FMISO-defined hypoxia or pixel intensities relative to the MRI abnormality between the virtual
and the clinical FMISO-PET image.

Current analysis of human FMISO-PET images relies on the relatively arbitrary choice of a single
intensity threshold to differentiate regions of hypoxia from the rest of the brain (Swansonet al., 2009).
However, it is likely that this fixed cutoff neglects significant information in the FMISO-PET image. This
work provides a tool for quantifying the information that is lost as a function of the imaging process,
which allows for the design of better image acquisition and reconstruction techniques.

A limitation of this modelling approach includes fundamental differences in the morphology of
the MRI-defined tumour abnormality between simulated and actual due to mass effect, which is not
included in the PIHNA model presented here. For instance, the MRI images of the patient show distinct
deviation of the brain midline and insula region due to herniation. Future work implementing the force
component of tumour growth may provide more accurate simulations of the tumour shape (Chenet al.,
2001; Gevertzet al., 2008). Further work in accounting for biomechanical forces of tumour growth
within the brain may improve the ability to predict tumour shape and anatomical evolution. In addition,
using a patient-specific tissue classification map instead of a generic atlas may yield more accurate
results.

Further evaluations of this modelling tool are needed to determine how accurately simulation results
quantitatively predict clinical PET imaging data in glioma patients. However, the ability to produce
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simulated PET images from MRI data using the PIHNA model suggests a way to link functional
metabolic information provided by PET with anatomical information provided by MRI on a patient-
specific basis. This result can impact current clinical GBM treatment by providing greater quantitative
insight on the regions of treatment resistance and thein vivobiochemical dynamics of the disease within
individual patients. Furthermore, this modelling system may improve GBM treatment by providing
a novel means for distinguishing hyper activity from hyper density of hypoxic cells on a FMISO-PET
image.
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A. PIHNA model

The PIHNA model is a continuous reaction–diffusion model and is a logical extension of our previous
PI model. It was designed in order to consider the complex interplay of essential histological character-
istics of GBM and has already provided insights into the grading of GBM (Swansonet al.,2011). The
PIHNA model partitions the tumour cell populations into three classes: well-oxygenated ‘normoxic’
tumour cells (c), hypoxic tumour cells (h) and dead or necrotic tumour cells (n) along with angiogenic
factors (a), density of vasculature (v) and total tumour cell density (T). The interplay between these
variables represent the ‘angiogenic cascade,’ which we define using five coupled partial differential
equations:
Normoxia

∂c

∂t
=

diffusion
︷ ︸︸ ︷
∇ ∙ (D(x)c(1 − T)∇c) +
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Hypoxia
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Tumour angiogenic factors (TAFs)

∂a

∂t
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Vasculature
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Necrosis

∂n

∂t
=

conversion between cell populations
︷ ︸︸ ︷

αhh

(
1 −

v

v + c + h

)
+

αnn

K
(c + h + v), (A.5)

Diffusion coefficients

D(x) =

{
Dw for x ∈ whitematter,

Dg for x ∈ grey matter.
(A.6)

Briefly, the rate of change of normoxic cell density over time depends on the cell’s net diffusion and
proliferation rates and is coupled to the hypoxic model compartment such that normoxic cells turn
hypoxic when vasculature is limited (A.1). The rate of change of hypoxic cell density is based upon
the diffusion and vasculature dependence of these cells to remain hypoxic or turn normoxic or necrotic
(A.2). TAFs released by both normoxic and hypoxic cells is regulated by a third equation involving
modest secretion of these factors by normoxic cells and significant production by hypoxic cells (A.3).
Vasculature is defined by a fourth equation that incorporates diffusion (A.4). Finally, the last equation
governs growth of the necrotic core as a result of insufficient vasculature and death of hypoxic cells
(A.5). Besides controlling for growth and death of the different cell populations and metabolic factors,
the model follows our previous work and considers differing rates of cell migration within the brain
by distinguishing between grey and white matter such that all cell populations diffuse faster in white
matter than in grey,Dw = 10Dg (Swansonet al.,2003;Jbabdiet al.,2005). Interactions between cell
populations and TAFs are governed by Michaelis–Menten kinetics. Parameter values and references are
listed in Table2. Further discussion regarding the form and justification of the equations can be found
elsewhere (Swansonet al., 2011).

Patient-specific PI model parameters (DPI, ρPI) were determined from pre-treatment MRI tumour
volumes (Harpoldet al., 2007;Szetoet al., 2009;Wanget al., 2009) and were converted using a one-to-
one mapping of PIHNA model parametersDc andρ (Fig. 8). While the travelling wave dynamics of the
PI model are well understood (Fisher,1937) and the same qualitative phenomenon are observed in the
PIHNA model, a precise analytical relationship between PIHNA model parameters and shape and speed
of the travelling wave solution has not been articulated, necessitating the one-to-one mapping between
the PI model parameter space and PIHNA.
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