
The role of IDH1 mutated tumour cells in secondary glioblastomas: an evolutionary game

theoretical view

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2011 Phys. Biol. 8 015016

(http://iopscience.iop.org/1478-3975/8/1/015016)

Download details:

IP Address: 128.208.64.235

The article was downloaded on 08/02/2011 at 22:17

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1478-3975/8/1
http://iopscience.iop.org/1478-3975
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING PHYSICAL BIOLOGY

Phys. Biol. 8 (2011) 015016 (9pp) doi:10.1088/1478-3975/8/1/015016

The role of IDH1 mutated tumour cells in
secondary glioblastomas: an evolutionary
game theoretical view
David Basanta1, Jacob G Scott1, Russ Rockne2, Kristin R Swanson2

and Alexander R A Anderson1

1 Integrated Mathematical Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa,
FL 33612, USA
2 Pathology and Applied Mathematics at the University of Washington, Seattle, WA 98104, USA

E-mail: david.basanta@kclalumni.net and jacob.scott@moffitt.org

Received 17 September 2010
Accepted for publication 10 January 2011
Published 7 February 2011
Online at stacks.iop.org/PhysBio/8/015016

Abstract
Recent advances in clinical medicine have elucidated two significantly different subtypes of
glioblastoma which carry very different prognoses, both defined by mutations in isocitrate
dehydrogenase-1 (IDH-1). The mechanistic consequences of this mutation have not yet been
fully clarified, with conflicting opinions existing in the literature; however, IDH-1 mutation
may be used as a surrogate marker to distinguish between primary and secondary glioblastoma
multiforme (sGBM) from malignant progression of a lower grade glioma. We develop a
mathematical model of IDH-1 mutated secondary glioblastoma using evolutionary game
theory to investigate the interactions between four different phenotypic populations within the
tumor: autonomous growth, invasive, glycolytic, and the hybrid invasive/glycolytic cells. Our
model recapitulates glioblastoma behavior well and is able to reproduce two recent
experimental findings, as well as make novel predictions concerning the rate of invasive growth
as a function of vascularity, and fluctuations in the proportions of phenotypic populations that
a glioblastoma will experience under different microenvironmental constraints.

1. Introduction

Our ability to tease apart pathologic differences in cancers
began with microscope and differential staining and has
progressed to the current age of molecular medicine.
The mantra of clinical medicine in the molecular age is
‘personalized medicine’—the hope that one day we will
be able to perfectly understand each person’s tumor at the
molecular and mechanistic level in order to prescribe the
perfect treatment. While we have made many advances
in subtyping many different cancers and even designed
molecularly targeted therapies, the results so far have been
disappointing. One cancer that has remained particularly
resistant to our therapies is glioblastoma multiforme (GBM),
which carries a prognosis of less than a year and certain
mortality.

It has been understood for several years that there
are different subtypes of glioblastoma characterized by
mutation pattern and cell of origin [1], but this knowledge
has not altered our treatment strategy, only our ability
to prognosticate outcome. That these subtypes all end
up looking the same under the microscope and end up
behaving very similarly as aggregates is an example of
convergent evolution—genotypically different cells with
similar phenotypic characteristics.

Most recently, two significantly different classes of
glioblastoma have been identified which carry very different
prognoses [2–4]. These two groups of glioblastoma are, for
the most part, differentiated by mutations found in a single
coding region of an enzyme involved in the Krebs cycle,
isocitrate dehydrogenase 1 (IDH1). This mutation is present
in the majority of secondary glioblastomas (sGBM) and low
grade gliomas (LGGs), many of which progress to become
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sGBMs. Recent published works have stressed different
and sometimes opposing data concerning the effect of this
mutation. Specifically, work published by Zhao et al [5]
suggests that the major disruption of this mutation is metabolic
in nature leading to dysregulation of the conversion of
isocitrate to a-ketoglutarate (a-KG) and a concomitant increase
in the hypoxia inducible factor-1α (HIF-1α) expression which
is known to correlate with glioma progression [5]. In
counterpoint is the work of Dang et al [6] which suggests
that the levels of a-KG are unaffected, but that, instead, the
mutation leads to a gain of function and the production of the
onco-metabolite 2-hydroxyglutarate (2-HG). This byproduct
has been linked to the formation and progression of brain
tumors [7] in patients with the autosomal recessive disease L-
2-hydroxyglataric aciduria, but the mechanism is unknown.
Karcher et al [8] showed that the angiogenic cascade of
primary glioblastoma is almost entirely dependent upon
the vascular endothelial growth factor A (VEGF-A), while
secondary glioblastoma depends equivalently on VEGF-A and
the platelet-derived growth factor AB (PDGF-AB) suggesting
that the neovascularization between the two subtypes is likely
distinct.

These differences, while striking, have not yet made an
impact on the treatment of sGBM, nor have they allowed
for a consensus on the underlying mechanistic differences
stemming from these genetic changes. One significant
assumption that allows us to gain insight into these differences
is that excessive production of angiogenic factors can lead to a
vascular response that is far from optimal—with hallmarks of
disordered vasculature being tortuous, ineffective and leaky
vessels [9]. This has a direct implication for the IDH1
mutant sGBM, since it has been suggested that this mutation
enhances the angiogenesis-inducing abilities of these tumors
through regulation of HIF-1α. This, in conjunction with
phenotypes that actively promote vascular formation (e.g.
hypoxic cells), leads us to the hypothesis that IDH1 mutant
sGBM, whilst good at recruiting vasculature, the functionality
of this vasculature will critically depend on the interactions
between the multiple phenotypes that makeup the tumor
population. We use evolutionary game theory (EGT) as
our modeling tool to investigate how interactions between
distinct tumor phenotypes (relevant to sGBM) affect cancer
progression.

In this paper we aim to integrate recent experimental
and clinical insights into a theoretical model to gain deeper
understanding of IDH1 mutated sGBM. In order to do that, we
developed an EGT model of the interactions between four
tumor phenotypes that we believe characterize sGBM and
the role of IDH-1 as it relates to angiogenesis, a hallmark
of this disease. The EGT-derived replicator equations show
that vascularization affects cancer progression in a way that
accelerates the emergence of invasive phenotypes. These
results are consistent with clinical imaging and suggest that
angiogenesis could play a major role in the dominance of
invasive glycolytic phenotypes in other types of cancer.

2. An evolutionary game theory model

EGT is a mathematical tool that began in the social and
economic sciences with the aim to understand how the
interactions between different entities, called players, affect
the outcome of a game [10–12]. EGT is also considered to
be a promising tool in which to frame oncological problems
[13]. With the new emphasis on cancer at the phenotypic level
[14, 15], the suitability of mathematical tools, such as EGT,
that focus on cell–cell interactions has been made more
relevant.

In EGT the behavior of the players is not assumed to be
based on rational payoff maximization, but it is thought to be
shaped by trial and error—adaptation through natural selection
or individual learning [16]. In the context of the evolution
of populations there are two game theory concepts that have
to be interpreted in a different light than in traditional game
theory. First, a strategy is not a deliberate course of action but
a phenotypic trait. The payoff is Darwinian fitness, that is,
average reproductive success. Secondly, the players compete
or cooperate to become a larger share of the population [11].

Early tumors are characterized by rapidly proliferating
cells that have become independent from the microenviron-
ment in regard to growth. It is also well known that tumor
cells in gliomas are more motile than in solid tumors with as
many as half of the patients having microscopic invasion of
glioblastoma cells in the contralateral hemisphere at diagno-
sis [17]. We assume that the IDH1 mutants can emerge from
the rapidly proliferating population or from the motile popula-
tion. Thus, our model hypothesizes a tumor composed of four
glioma cell phenotypes: autonomous growth (AG), invasive
(INV), glycolytic (GLY) and a hybrid phenotype which is both
invasive and glycolytic (INV-GLY). Only the last two types are
assumed to have the IDH1 mutation. These phenotypes could
represent cells with any number of specific genetic mutations,
but in this model only the phenotype will be considered. It
is also important to realize that these labels are broad catego-
rizations of the phenotypes and that the INV phenotype is not
constantly on the move but just more likely to migrate than the
AG phenotype.

In our previous paper we described a simpler but similar
model [18], where we examined the interactions between three
cell phenotypes, AG, INV, and GLY, in order to understand
the relationship between invasion and glycolytic fractions.
The model described in this paper builds on the strengths
of the previous one and extends it with the addition of a
fourth phenotype, INV-GLY, and a parameter (α) that allows
us to examine the effects of angiogenesis within the context
of sGBM. The relative costs and benefits of how cells with
different phenotypes interact with each other and with the
microenvironment are defined in the payoff table 1. We utilize
the same parameters as our previous model (c, k and n) [18]
and a new one (α) which represents the benefit of vascularity
with regard to proliferation. The parameter c represents the
cost of motility for the phenotypes capable of moving (INV and
INV-GLY), which is assumed to be very low in glioma when
compared with solid cancers like carcinomas. This fitness cost
can be viewed, among other things, as an opportunity cost that
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Table 1. The four phenotypes in the game are autonomous growth
(AG), invasive (INV), glycolytic (GLY) and invasive glycolytic
(INV-GLY). The base payoff in a given interaction is r and the cost
of moving to another location with respect to the base payoff is c.
The fitness cost of acidity is n and k is the fitness cost of having a
less efficient glycolytic metabolism. The benefits from having
access to the vasculature as a result of angiogenesis are reflected by
the parameter α.

AG INV GLY INV-GLY

AG 1
2 + α

2 1 1
2 − n + α 1

2 − n + α

INV 1 − c 1 − c

2 1 − c

3 1 − c

3

GLY 1
2 − k + n + α 1 − k + α

2
1
2 − k + α

4 1 − k + α

2

INV-GLY 1
2 − k + n + α 1 − k + α

2 1 − c

3 − k + α

2 1 − k − c

6 + α

2

Table 2. List of variables used by the model.

Value Affected phenotypes Meaning

c INV, INV-GLY Cost of motility
k GLY, INV-GLY Cost having a glycolytic metabolism
n AG, INV Cost of living in an acid

microenvironment
α AG, GLY, INV-GLY Benefit from angiogenesis

moving cells incur since they cannot proliferate whilst moving
[19, 20] or as the cost for degrading and detaching from the
extra cellular matrix. The parameter k represents the cost of
utilizing glycolysis as opposed to the more efficient oxidative
phosphorylation. The parameter n represents the penalty that
cells suffer for living in an acidic environment created by the
glycolytic cells. GLY cells will suffer this penalty less as they
are adapted to live in acidic environments. The parameter α

represents the benefit of the surrounding vasculature. One way
of envisioning variations in α is the increase in oxygen and
nutrients resulting from an optimized vascularization resulting
from the release of HIF-1α and downstream proteins. Table 2
lists all model variables. These variables are normalized and
assumed to be in the range [0:1].

The payoff table 1 assumes that non-motile phenotypes
(GLY and AG) will share existing resources with the cells they
interact with, whereas motile phenotypes can chose whether to
stay or move. In the case of INV cells, they will always move
and leave existing resources for the cell it is interacting with
unless the interaction happens with another INV cell, in which
case one of the INV stays. INV-GLY cells behave as GLY cells
when interacting with non-glycolytic cells (AG and INV) but
move in response to the acidification of the environment.

One important difference with the previous model is
that angiogenesis is now possible for cells, once they reach
a critical mass, to produce enough angiogenic factor to
benefit from added vasculature. As a result of HIF-1α being
produced, resources needed for sustained tumor growth are
provided by newly formed vasculature. The model assumes
that glycolytic cells (GLY and INV-GLY), having the IDH-
1 mutation, produce more of this angiogenic factor. On the
other hand, cells that are moving (not just capable of motility
but stationary at a given time) do not produce significant HIF-
1α. Furthermore, we assume that whereas too little HIF-1α

leads to insufficient vascularization, too much of it can lead

to leaky or otherwise defective vascularization [9]. This is
shown in the table by the fact that AG cells interacting with
other AG cells (assumed to produce only moderate amounts of
HIF-1α) receive a benefit of α

2 from the moderate angiogenic
vasculature. On the other hand, AG cells interacting with
GLY cells produce, in combination, an optimal amount of
HIF-1α and obtain in return the total benefit derived from
functioning vascularity (α). Finally, as IDH-1 mutant GLY
cells proliferate producing excessive amounts of HIF-1α, the
benefit of angiogenesis is a reduced α

4 , consistent with the
angiogenic vasculature being leaky and inefficient in this case.

Another notable difference with the previous model is that
the cost of motility is assumed to be smaller in the presence of
acid-producing glycolytic phenotypes. This is represented by
a cost of motility c

3 and represents the acid-mediated invasion
[21–23] of glioma cells throughout the brain, particularly along
the myelinated neuronal axons in the white matter of the brain
along which glioma cells are known to quickly invade [24, 25].
This reduced cost of motility also quantifies and models the
generally invasive characteristics of gliomas which are well
known for their diffuse invasion that has been quantified in
human gliomas to be at rates suggesting significant motility
on the time scale of hours [25, 26].

From the payoff table (table 1) it is possible to derive
replicator equations that describe the change in the tumor
populations over time. The fitness of any given population will
depend on the results of the interactions with other phenotypes.
If the proportion of INV phenotypes is pi , the proportion of
GLY ones is pg and the proportion of INV-GLY is pig , then
the fitness of an AG cell is

W(AG) = (1 − pi − pg − pig)
( r

2
+

α

2

)
+ pi(r)

+ pg

( r

2
− n + α

)
+ pig

( r

2
− n + α

)

= r + α

2
+ pi

r − α

2
+ (pg + pig)

(α

2
− n

)
. (1)

Similarly, the fitness of INV cells is

W(INV) = (1 − pi − pg − pig)(r − c) + pi

(
r − c

2

)

+ pg

(
r − c

3

)
+ pig

(
r − c

3

)

= r − c + pi

c

2
+ pg

2

3
c + pig

2

3
c. (2)

The GLY cell fitness is

W(GLY) = (1 − pi − pg − pig)
( r

2
− k + n + α

)

+ pi

(
r − k +

α

2

)
+ pg

( r

2
− k +

α

4

)
+ pig

(
r − k +

α

2

)

=
( r

2
− k + n + α

)
+ pi

(
r − α

2
− n

)

−pg

(
n +

3

4
α

)
+ pig

(
r − α

2
− n

)
, (3)

and finally INV-GLY is defined as

W(INV– GLY) = (1 − pi − pg − pig)

×
( r

2
− k + n + α

)
+ pi

(
r − k +

α

2

)

+ pg

(
r − c

3
− k +

α

2

)
+ pig

(
r − k − c

6
+

α

2

)

3
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=
( r

2
− k + n + α

)
+ pi

(
r − α

2
− n

)

+ pg

(
r − α

2
− c

3
− n

)
+ pig

(
r − α

2
− c

6
− n

)
. (4)

The average fitness (W̄ ) of the entire population is given by

W̄ = (1 − pi − pg − pig)W(AG) + piW(INV)

+ pgW(GLY) + pigW(INV − GLY). (5)

From these expressions it is possible to derive the discrete
replicator equations that describe, using the absolute fitness
of each of the populations, how the different phenotypic
populations change over time [16]. The proportion of a cellular
population in the model at a given time t will depend not only
on its own fitness (W) but also on the fitness of the other cell
populations. If the fitness of a phenotype X, W(X), is higher
than the average fitness of all the phenotypes combined (W̄ ),
then the proportion of that phenotype will increase in t + 1,
for as long as the reasons that keep the phenotype relatively fit
remain. The replicator equations are defined as follows:

pit+1 = pit

W( INV)

W̄
,

pgt+1 = pgt

W( GLY)

W̄
,

pigt+1 = pigt

W( INV − GLY)

W̄
.

(6)

It is important to bear in mind that the time steps do not
represent a specific measure of time.

3. Results

Since IDH1 has been implicated in the control of the
angiogenic cascade, we began our exploration of the parameter
space focused on the variable α which can be thought of
as a surrogate for vascularity or vascular fitness. In these
simulations, we measured the glycolytic fraction (GLY + INV-
GLY) as these cells are able to be approximated clinically with
imaging (MR spectroscopy or FDG-PET) and because earlier
work has suggested that emergence of the glycolytic phenotype
is a prerequisite for the emergence of invasion [18, 27]. We
found that in the glioma relevant areas of the parameter space
(with relatively low cost of glycolysis, k, and motility, c),
the pure GLY cells never composed a significant fraction of
the total glycolytic proportion after invasion emerged. And
since invasion is a definitive component of all human gliomas,
we chose to concentrate on measuring the proportion of the
population composed of INV-GLY cells.

To explore this relationship, we ran the replicator
equations for 5000 time steps for 1000 values (in increments
of 0.001 between 0 and 1) of α and c (cost of motility) and
measured the proportion of INV-GLY cells for a number of
k, n (cost of acidification) value pairs. Four representative
examples of such plots are shown in figure 1. As the cost
of glycolysis (value of k) increases, the proportion of the
parameter space in which INV-GLY cells dominate shrinks.
Through all values, a diagonal relationship emerges in which
we see that matched extreme values of α and c select against

INV-GLY cells. In the most glioma relevant plots (in which
the cost of glycolysis, k, and motility, c, are relatively low) we
see a strong dependence of the INV-GLY fraction on α for all
values of c. It is worth noting that for higher values of k, parts
of the parameter space show discontinuities that result from
the fact that purely GLY cells are very competitive with INV-
GLY for those values of c and α and, given the oscillations
that characterize the population dynamics, the cutout time
step can show either GLY or INV-GLY dominance. A better
view of this would be that in that area of the parameter space,
coexistence of those two phenotypes should be expected.

Since the emergence of the INV-GLY phenotype may be
considered as a late stage event in glioma progression, we next
explored the speed at which the INV-GLY cells dominated
the entire tumor population. To do this we ran simulations at
specific value pairs of k and n and varied c and α through all
possible values. Figure 2 shows four plots with escalating k
and n pairs matched to figure 1. We changed n at the same
rate as k as the cost of living in an acid environment has to be
higher than the cost of glycolysis for glycolytic phenotypes to
emerge in the tumor. To measure the speed of progression,
we subtracted the number of time steps it took for the tumor
to reach 50% INV-GLY from 1000 (the maximum number
of time steps the simulations were evaluated). So, a tumor
with a speed of 999 took only one time step to reach INV-GLY
dominance, while a tumor with a speed of 0 never achieved this
dominance. The diagonal relationship that emerged in figure
1 again appears in these plots, with matched extreme c and α

values having a speed of 0. This is somewhat expected, based
on the results given in figure 1, since these tumors do not have
a large proportion of INV-GLY cells. There are some notable
areas of apparent discordance which can be misleading due to
an artifact of our endpoint (e.g. in the k = 0.2 plots, the low
α, high c portion of the plot has a very high speed value but
a very low INV-GLY fraction, cf figures 1 and 2). While in
this portion of the parameter space the INV-GLY proportion
does indeed rapidly gain the majority proportion (high speed),
it does not end up becoming winning at the end of the game
(dynamic that is observed in data not shown).

While these plots have given us a big picture for
understanding the behavior of the model, we have endeavored
to understand the specific case of sGBM, and therefore a more
rigorous exploration of the relevant area of the parameter
space was warranted. Physiologically, the brain is always
given precedence in the case of sugar supply, so the cost of
glycolysis (k) is relatively low. It is well known that gliomas
are extremely motile tumors, which would suggest a low c. We
have shown that the behavior of the tumor is highly dependent
upon α, so we chose to explore the dynamics of changing α

on a tumor with k = 0.1, c = 0.1 and n = 0.2 (figure 3, control
row). What we found was a strong dependence on α, not only
on the temporal development of the different phenotypes in
the tumor, but also on the overall outcome. Specifically, we
observed that at low levels of α, the INV cells dominated, while
increasing levels of α not only caused the game to change in
favor of the INV-GLY cells but also sped up this outcome.
These outcomes from our EGT model are consistent with
observed behavior in LGG and sGBM tumors: LGGs do not
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Figure 1. The fraction of INV-GLY cells after 5000 time steps as we increase the cost of glycolysis (k = 0.01, 0.1, 0,2 0.3) and acidity (n =
0.02, 0.2, 0.3 and 0.4). The heatmap (from dark blue signifying low, to dark red signifying high) represents the proportion of INV-GLY
cells. High values of α select for INV-GLY phenotypes and both extremely low and extremely high values of c select against it (by
promoting pure INV in the former and pure GLY in the latter). As the cost of glycolysis increases, even as the benefit of acidifying the
environment increases, the proportion of INV-GLY cells is reduced.

need new vasculature to survive and are capable of co-opting
the existing vasculature in the brain for long periods of time,
leading to a prognosis of decades. LGGs that do progress to
become sGBMs outgrow the native nutrient supply in the brain.
The connection to the IDH1 mutation that makes a distinction
between primary and secondary GBM lies in the promotion
of the glycolytic phenotype and suggests the hypothesis that
primary GBM may differ from sGBM only in the rate at which
they progress from a less malignant lesion. Specifically, the
rate of progression may be so rapid in some primary GBM that
by the time they are detected they have already become sGBM.
Furthermore, figure 3 shows that the steady state is dependent
on the value of α and that when this changes (as it is the case in
the second and third row in figure 3), the dynamics of the tumor
could change in ways that could reverse previous trends. Anti-
angiogenics (like VEGF-inhibitor bevacizumab) are currently
used clinically in an attempt to tame the angiogenic vasculature
found within gliomas [28]. The second row of figure 3

shows an investigation of the effect of treatment with anti-
angiogenics on our EGT-derived virtual gliomas. We iterated
the game for the parameter values found in figure 3(a)–(c),
and at time step 600 we imposed a decrease in alpha (vascular
fitness) to correspond to the anti-angiogenic treatment effect
in figures 3(d)–(f ). In all cases, there is a significant selection
for the INV phenotype and away from GLY and GLY-INV
phenotypes. Further, the total proportion of the tumor that
is invasive (INV+ GLY-INV) increases with the treatment
with anti-angiogenic. These results are strikingly similar to
those observed clinically in which there is a dramatic increase
in invasion of these tumors. Figure 4 illustrates the case
of GBM treated with bevacizumab in which the glycolytic
fraction of the tumor is decreased (nodular tumor in figure 4(C)
decreases on FDG-PET as shown in figure 4(F)) and the
recurrent tumor exhibits a dramatic invasion across the corpus
callosum (figure 4(E)). Further, the simulations in figures 3(d)–
(f ) suggest a testable prediction that sGBMs treated with
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Figure 2. The speed of progression toward the malignant invasive glycolytic phenotype as we increase the cost of glycolysis (k = 0.01, 0.1,
0,2 0.3) and acidity (n = 0.02, 0.2, 0.3 and 0.4). The heatmap (from dark blue signifying low, to dark red signifying high) represents the
speed. This is measured between 0 and 999, with the former implying that a majority of INV-GLY is never achieved and the latter implying
that this majority is reached after only one time step.

anti-angiogenics will become dominated by invasive
phenotypes that are less likely to be glycolytic.

4. Discussion

The advent of the molecular age has enabled the possibility
of truly personalized treatment of cancer. Increasingly
we are identifying important mutations that confer specific
advantages to tumors, and yet only in a handful of situations
have we been able to capitalize on this information. Much
work has been done of late in glioblastoma to understand
the specific genetic pathways at work in this disease. Most
recently, the mutation in IDH1 has been identified as a marker
of good prognosis for glioblastomas, but the mechanism for
this has yet to be elucidated. In this work we have attempted to
understand this prognostic change by building and exploring
a mathematical model that takes into consideration the recent
developments surrounding this mutation. We have chosen
EGT to explore this question because of its elegant simplicity
and because of its ability to tease apart interacting tumor
populations at the phenotype level.

The first test of any model should be to ensure that
it can recapitulate known behaviors. On this point our
model succeeds on a number of fronts. We found that
increasing the level of benefit of angiogenesis (α) in glioma
relevant areas of the parameter space corresponded with an
increased speed of progression, marked by a quicker arrival
at higher glycolytic fractions (figure 2). This result is nicely
corroborated in a clinical trial reported by Kruer et al [29] that
showed that patients with hypermetabolic tumors as imaged
using fluorodeoxyglucose (18F) FDG-PET had a significantly
quicker time to clinical progression (33 versus 52.3 months).
While this result is somewhat intuitive, another aspect of the
model behavior is less so, and could have tempered some of
the fervor toward anti-angiogenic therapies when they were
first introduced. We find that when we reduce the benefit
of angiogenesis (reduce α) the imaging surrogate for the
glycolytic phenotype, FDG-PET avidity, is blunted, and the
fraction of cells displaying the invasive phenotype is promoted.
This has recently been well documented by both imaging and
histologic studies [30] and serves as an explanation for the
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Figure 3. Plot of k = 0.1, n = 0.2, c = 0.1 and α = 0.3, 0.32, 0.35. The first panel shows two interesting dynamics: with increasing benefit of
vasculature (increasing α), we see a more rapid progression as well as a higher overall proportion of cells with the GLY phenotype. Also,
decreasing α promotes the INV phenotype (stars) which is recapitulated in recurrent glioblastoma after bevacizumab treatment. The two
panels below the control one show what happens after bevacizumab has been administered after 600 time steps without assuming whether
the main effect would be a normalization of the angiogenic vasculature (which would increase α, shown in the second row) or the reduction
of the existing vasculature (which would have a negative effect on α, shown in the third row).

changes that we see in glioblastoma patients after failure of
bevacizumab (a monoclonal antibody to VEGF-α).

The recapitulation of known behaviors allows some
measure of confidence in our model and gives some credence
to predictions that the model can make. Now we can begin to
make observations about the mechanisms driving the behaviors
that were, otherwise, obscured by the biological complexity.
A recurring theme observed in the time-dependent behavior
of our model suggests an underlying mechanism driven by
interactions between different phenotypes. Specifically, the
emergence of the invasive phenotypes is always preceded
by a rise in the glycolytic fraction. This rise in the
glycolytic fraction is preceded by an overgrowth of AG cells.
Mechanistically, this could be explained as follows: AG
cells outgrow the resources available to them in their local
environment causing, among other things, hypoxia. This
hypoxia initiates the angiogenic cascade and begins to allow
the GLY cells to outcompete the AG cells. Once the GLY

cells grow into a viable proportion, the damage that they do
to the local environment with their excessive acid production
begins to promote the benefit of cells that can move to a new
place (INV). We see this sequence reproduced in nearly all
areas of the parameter space, and certainly in all the areas that
are relevant to glioma. Further, these results agree nicely
with earlier work done by this group suggesting that the
glycolytic phenotype is necessary to bring about the emergence
of invasion [18].

In addition to this sequence, there was an interesting
dynamic that emerged in some areas of the parameter space.
Figure 5 shows an example of two types of oscillatory behavior
that our model can produce. Even though neither manage to
sustain the oscillations for too long, they both exhibit dominate
alternating oscillations of high AG giving way to high INV.
In figure 5(a) the INV-GLY phenotype is an intermediary
between these and eventually aids in the emergence of the
INV population as the single dominant phenotype. Whilst
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Figure 4. In this series of images, adapted from Iwamoto et al [30] we see three images from the same patient before and after treatment
with anti-angiogenic therapy, in this case bevacizumab. The top three images, representative of high alpha, show high glycolysis and low
invasion. After treatment with bevacizumab, we see a reduction in glycolytic fraction (blunting of FDG-PET avidity) and the promotion of
invasion, as predicted by our model.
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Figure 5. Two examples of oscillations that are characteristic of some of the simulations with the replicator equations. In both cases these
oscillations are transient, leading to a steady state characterized by non-glycolytic cells. In the first scenario, with high costs of motility and
glycolysis (k and c = 0.4) and α = 0.35, the steady state is dominated by purely invasive cells and the oscillations are characterized by
dominance of AG cells which leads to a surge in glycolytic cells that selects for invasive phenotypes. In the second scenario (k and c = 0.4)
the slightly smaller value of α (0.25) means that glycolytic cells never emerge in large enough numbers to help purely invasive cells
dominate the tumor population.

there is no evidence that such oscillations truly occur in real
tumors, it is an intriguing prediction that is also hinted at in
the sequence we discussed above, i.e. the metabolic activity
of the tumor may have a cyclic nature that ultimately leads to
emergence of a purely invasive population.

In figures 1 and 2 we explored the effect of varying k,
the cost of glycolysis, on the steady-state INV-GLY fraction
and the speed at which INV-GLY cells reach a majority of the
tumor population. This change in k could represent changes
in the levels of available substrate for glycolysis. It is possible
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that the value of k could change in a cyclical fashion as tumors
grow beyond their carrying capacity (increasing k) or produce
new vessels (which would decrease k). We found that the
proportion of INV-GLY phenotypes is sensitive to changes in
k and that, therefore, the proportion of INV-GLY cells could
change over periods of time as k varies up and down.

We have presented an evolutionary game theoretical
model weaving together recent discoveries concerning the
underlying biology of sGBM which nicely recapitulates the
known behavior of this disease and further serves to elucidate
some underlying mechanistic processes at the phenotype scale.
The newest hope on the horizon for glioma therapeutics
lies in new drugs targeting proteins necessary for invasion.
These drugs would serve to affect our model by artificially
increasing the cost of motility and are therefore testable
with our construct. Future work with this model will center
around perturbations with these novel therapeutics by varying
order, combinations and ‘dose’ allowing for testable clinical
hypotheses. Additionally, other investigations with this EGT
model include adapting the model parameter r that represents
the benefit from the fitness of the environment to make a clear
distinction between gray and white matter regions in the brain
as well as the differential cost of motility in each (c). Although
the game is not spatial, these aspects may be incorporated by
comparing multiple games and varying these parameters such
that they represent gliomas originating in ‘primarily’ gray or
white matter regions of the anatomy, as well as regions of
interface between the tissue types. Future work could also
include making the model more qualitative which would allow
a better validation of the model using image-driven parameter
estimation [31].

Acknowledgment

This work was supported in part by NIH 1 U54 CA143970-01.

References

[1] Wen P Y and Kesari S 2008 Malignant gliomas in adults
N. Engl. J. Med. 359 492–507

[2] Parsons D W et al 2008 An integrated genomic analysis of
human glioblastoma multiforme Science 321 1807–12

[3] Nobusawa S, Watanabe T, Kleihues P and Ohgaki H
2009 Idh1 mutations as molecular signature and predictive
factor of secondary glioblastomas Clin. Cancer Res.
15 6002–7

[4] Yan H et al 2009 Idh1 and Idh2 mutations in gliomas N. Engl.
J. Med. 360 765–73

[5] Zhao S et al 2009 Glioma-derived mutations in IDH1
dominantly inhibit IDH1 catalytic activity and induce
hif-1alpha Science 324 261–5

[6] Dang L et al 2010 Cancer-associated IDH1 mutations produce
2-hydroxyglutarate Nature 465 966

[7] Aghili M, Zahedi F and Rafiee E 2009 Hydroxyglutaric
aciduria and malignant brain tumor: a case report and
literature review J. Neurooncol. 91 233–6

[8] Karcher S, Steiner H H, Ahmadi R, Zoubaa S, Vasvari G,
Bauer H, Unterberg A and Herold-Mende C 2006 Different
angiogenic phenotypes in primary and secondary
glioblastomas Int. J. Cancer 118 2182–9

[9] Jain R K, Tomaso E di, Duda D G, Loeffler J S, Sorensen A G
and Batchelor T T 2007 Angiogenesis in brain tumours Nat.
Rev. Neurosci. 8 610–22

[10] von Neumann J and Morgernstern O 1953 Theory of Games
and Economic Behaviour (Princeton, NJ: Princeton
University Press)

[11] Sigmund K and Nowak M 1999 Evolutionary game theory
Curr. Biol. 9 503–5

[12] Nowak M 2006 Evolutionary Dynamics (Cambridge, MA:
Belknap)

[13] Gatenby R and Maini P 2003 Cancer summed up Nature
421 321

[14] Hanahan D and Weinberg R 2000 The hallmarks of cancer
Cell 100 57–70

[15] Hahn W C and Weinberg R 2002 Rules for making human
tumor cells N. Engl. J. Med. 347 1593–603

[16] Smith J M 1982 Evolution and the Theory of Games
(Cambridge: Cambridge University Press)

[17] Matsukado Y, Maccarty C S and Kernohank J W 1961 The
growth of glioblastoma multiforme (astrocytomas, grades 3
and 4) in neurosurgical practice J. Neurosurgery 18 636–44

[18] Basanta D, Simon M, Hatzikirou H and Deutsch A 2008
Evolutionary game theory elucidates the role of glycolysis
in glioma progression and invasion Cell Prolif. 41 980–7

[19] Giese A, Loo M, Tran N, Haskett S W and Berens M E 1996
Dichotomy of astrocytoma migration and proliferation
Int. J. Cancer 67 275–82

[20] Giese A, Bjerkvig R, Berens M E and Westphal M 2003 Cost
of migration: invasion of malignant gliomas and
implications for treatment J. Clin. Oncol. 21 1624–36

[21] Gatenby R, Gawlinski E, Gmitro A, Kaylor B and Gillies R
2006 Acid-mediated tumor invasion: a multidisciplinary
study Cancer Res. 66 5216–23

[22] Gatenby R A and Gawlinski E T 2003 The glycolytic
phenotype in carcinogenesis and tumor invasion Cancer
Res. 63 3847–54

[23] Gatenby R A and Gillies R J 2004 Why do cancers have high
aerobic glycolysis? Nat. Rev. Cancer 4 891–9

[24] Swanson K R, Alvord E C and Murray J D 2000 A quantitative
model for differential motility of gliomas in grey and white
matter Cell Prolif. 33 317–29

[25] Harpold H L P, Ellsworth C A Jr and Swanson K R 2007 The
evolution of mathematical modeling of glioma proliferation
and invasion J. Neuropathol. Exp. Neurol. 66 1–9

[26] Wang C H et al 2009 Rognostic significance of growth kinetics
in glioblastoma: novel insights from combining serial mr
imaging with a bio-mathematical model for glioma growth
and invasion Cancer Res. 69 9133–40

[27] Gatenby R and Gillies R J 2004 Why do cancers have high
aerobic glycolysis? Nat. Rev. Cancer 4 891–9

[28] Raizer J J et al (North American Brain Tumor Consortium)
2010 A phase II trial of erlotinib in patients with recurrent
malignant gliomas and nonprogressive glioblastoma
multiforme postradiation therapy Neuro Oncol.
12 95–103

[29] Kruer M C, Kaplan A M, Etzl M M Jr, Carpentieri D F,
Dickman P S, Chen K, Mathieson K and Irving A 2009 The
value of positron emission tomography and proliferation
index in predicting progression in low-grade astrocytomas
of childhood J. Neurooncol. 95 239–45

[30] Iwamoto F M, Abrey L E, Beal K, Gutin P H, Rosenblum
M K, Reuter V E, DeAngelis L M and Lassman A B 2009
Patterns of relapse and prognosis after bevacizumab failure
in recurrent glioblastoma Neurology 73 1200–6

[31] Hogea C, Davatzikos C and Biros G 2008 An image-driven
parameter estimation problem for a reaction-diffusion
glioma growth model with mass effects J. Math. Biol.
56 793–825

9

http://dx.doi.org/10.1056/NEJMra0708126
http://dx.doi.org/10.1126/science.1164382
http://dx.doi.org/10.1158/1078-0432.CCR-09-0715
http://dx.doi.org/10.1056/NEJMoa0808710
http://dx.doi.org/10.1038/nature09132
http://dx.doi.org/10.1007/s11060-008-9706-2
http://dx.doi.org/10.1002/ijc.21648
http://dx.doi.org/10.1038/nrn2175
http://dx.doi.org/10.1016/S0960-9822(99)80321-2
http://dx.doi.org/10.1038/421321a
http://dx.doi.org/10.1016/S0092-8674(00)81683-9
http://dx.doi.org/10.1056/NEJMra021902
http://dx.doi.org/10.3171/jns.1961.18.5.0636
http://dx.doi.org/10.1111/j.1365-2184.2008.00563.x
http://dx.doi.org/10.1002/(SICI)1097-0215(19960717)67:2<275::AID-IJC20>3.0.CO;2-9
http://dx.doi.org/10.1200/JCO.2003.05.063
http://dx.doi.org/10.1158/0008-5472.CAN-05-4193
http://dx.doi.org/10.1038/nrc1478
http://dx.doi.org/10.1046/j.1365-2184.2000.00177.x
http://dx.doi.org/10.1097/nen.0b013e31802d9000
http://dx.doi.org/10.1038/nrc1478
http://dx.doi.org/10.1007/s11060-009-9922-4
http://dx.doi.org/10.1212/WNL.0b013e3181bc0184
http://dx.doi.org/10.1007/s00285-007-0139-x

	1. Introduction
	2. An evolutionary game theory model
	3. Results
	4. Discussion

