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Abstract
Glioblastoma multiforme (GBM) is the most malignant form of primary brain
tumors known as gliomas. They proliferate and invade extensively and yield
short life expectancies despite aggressive treatment. Response to treatment
is usually measured in terms of the survival of groups of patients treated
similarly, but this statistical approach misses the subgroups that may have
responded to or may have been injured by treatment. Such statistics offer
scant reassurance to individual patients who have suffered through these
treatments. Furthermore, current imaging-based treatment response metrics
in individual patients ignore patient-specific differences in tumor growth
kinetics, which have been shown to vary widely across patients even within
the same histological diagnosis and, unfortunately, these metrics have shown
only minimal success in predicting patient outcome. We consider nine newly
diagnosed GBM patients receiving diagnostic biopsy followed by standard-
of-care external beam radiation therapy (XRT). We present and apply a
patient-specific, biologically based mathematical model for glioma growth that
quantifies response to XRT in individual patients in vivo. The mathematical
model uses net rates of proliferation and migration of malignant tumor cells to
characterize the tumor’s growth and invasion along with the linear-quadratic
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model for the response to radiation therapy. Using only routinely available
pre-treatment MRIs to inform the patient-specific bio-mathematical model
simulations, we find that radiation response in these patients, quantified by
both clinical and model-generated measures, could have been predicted prior
to treatment with high accuracy. Specifically, we find that the net proliferation
rate is correlated with the radiation response parameter (r = 0.89, p = 0.0007),
resulting in a predictive relationship that is tested with a leave-one-out cross-
validation technique. This relationship predicts the tumor size post-therapy
to within inter-observer tumor volume uncertainty. The results of this study
suggest that a mathematical model can create a virtual in silico tumor with the
same growth kinetics as a particular patient and can not only predict treatment
response in individual patients in vivo but also provide a basis for evaluation
of response in each patient to any given therapy.

S Online supplementary data available from stacks.iop.org/PMB/55/3271/mmedia

Introduction

Glioblastomas are uniformly fatal primary brain tumors characterized by their extensive diffuse
invasion of the normal brain parenchyma and associated with a median survival of 10–12
months (Alvord and Shaw 1991). These characteristics lead to aggressive treatment strategies
that most often include surgery, irradiation and chemo-therapies. This somewhat algorithmic
approach to treatment leads to prompt action once the tumor is diagnosed. Magnetic resonance
imaging (MRI) is used to detect these tumors, and at the time of operation a second MRI image
is often acquired for surgical guidance. It is from these two pre-treatment images that we
are able to calculate kinetics of untreated tumor growth (Harpold et al 2007, Swanson et al
2002b, Wang et al 2009), specifically estimating net rates of proliferation and invasion for
the individual patient in vivo (Harpold et al 2007). When combining these rates with our
biologically based mathematical model for glioma growth and invasion, the resultant in silico
tumor accurately predicts subsequent untreated tumor growth in individual patients so well
that it is a prognostic indicator of durations of survival before therapy even begins (Harpold
et al 2007, Wang et al 2009). This study extends our prior successes with in silico prediction
of tumor growth to incorporate the effects of external beam radiation therapy (XRT) in nine
histologically diagnosed glioblastoma patients.

Background and original PI glioma model

Our biologically based modeling efforts are based on the hypothesis that, from a clinical
standpoint, gliomas can be quantitatively characterized by two net rates: proliferation (ρ) and
invasion (D) (PI model)—e.g., see Harpold et al (2007) for a recent review:

rate of change of
glioma cell concentration︷︸︸︷

∂c

∂t
=

net dispersal
of glioma cells︷ ︸︸ ︷
∇ · (D∇c) +

net proliferation
of glioma cells︷ ︸︸ ︷
ρc

(
1 − c

k

)
. (1)

Equation (1) is a reaction-diffusion partial differential equation that describes the density of
glioma cancer cells (c) in terms of two net rates: proliferation (ρ) and invasion (D) (PI model).

http://stacks.iop.org/PMB/55/3271/mmedia
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c = c(x, t) is the tumor cell density at time t and location x in units cells mm−3. D is the
net invasion rate (mm2/year), ρ is the net proliferation rate (1/year) and k is the tumor cell
carrying capacity of the tissue (108 cells mm−3), supposing a 10 μm diameter tumor cell
with logistic growth. We impose no-flux boundary conditions (n · ∇c = 0) to prevent tumor
cells from leaving the brain domain B at its boundary ∂B. This model is not cell-based
but describes the density of tumor cells and therefore reflects net measures of proliferation
and motility for the entire population of tumor cells, downstream from individual cell
behavior.

Major assumptions of the PI model

The PI model assumes that glioma cell invasion throughout the brain is a diffusion process
with the diffusion coefficient D. The model also assumes logistic growth of the tumor cell
population, so that the net proliferation is lower in regions of high cell density (where c ≈ k)
than in regions of low cell density (where c is much less than k).

Our PI model for glioma growth uses a ‘tip of the iceberg’ view of clinical imaging, where
post-contrast T1-weighted (T1Gd) and T2-weighted MRI are associated with isosurfaces of
constant density and are used to infer a gradient of tumor cells (Harpold et al 2007). The
key consequences of this model (equation (1)) are (1) an approximately linear radial growth
of the abnormality seen on imaging, which approaches a constant velocity of 2

√
Dρ defined

by Fisher’s approximation (Fisher 1937) and (2) a diffuse gradient of tumor cells peripheral
to the imaging abnormality, characterized by an invisibility index, which is the ratio of
the model parameters, D/ρ (Harpold et al 2007, Swanson 1999). A constant velocity of MR
imageable growth has been demonstrated for 27 untreated low-grade gliomas (Mandonnet et al
2003) and for at least one untreated high-grade glioma (Swanson and Alvord 2002a, Harpold
et al 2007, Swanson and Alvord 2002b) computed from serial MRI observations. Further,
model-defined rates of biological aggressiveness (D and ρ) have been found to be predictive
of survival, even when controlling for the standard clinico-pathologic prognostic parameters
(Wang et al 2009). The PI model has also been successfully applied to quantifying the
effects of surgical resection in glioblastoma patients (Swanson et al 2008b). This stands in
stark contrast to other modeling efforts which have focused on non-clinical situations such as
in vitro experiments or are not patient-specific due to the large number of parameters to be
estimated (Ribba et al 2006, Enderling et al 2006, Stamatakos et al 2006, 2007).

Response to XRT is typically measured in terms of survival of groups of patients treated
similarly. Additionally, response to XRT can be quantified in individual patients in terms of
changes in gross tumor volume (GTV) as observed on MRI and then classified according to the
response criteria for solid tumors (RECIST) or MacDonald criteria, which classify response
into one of four broad categories (Galanis et al 2006, Padhani and Ollivier 2001, Therasse
et al 2006), as illustrated in figure 1. Not only is there an absence of a more quantitative
measure of response, but currently there is no model for treatment delivery or response
for individual patients, in vivo, that can extend beyond statistical measures of survival.
We present and investigate an extension of a biologically based mathematical model for
glioma growth that quantifies the delivery of and response to XRT in individual patients,
in vivo. Using the classic linear-quadratic model for radiation efficacy and following Swanson
et al (2000), we model untreated glioma growth as well as XRT effects in individual glioma
patients and consider patient-specific virtual controls to investigate model-predicted survival
assuming a fatal tumor burden defined by both T1GD radius of 3.5 cm (Swanson et al
2008a).
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Figure 1. Response to therapy is conventionally assessed by determining changes in gross tumor
volume (GTV) on MRI prior to and after the administration of therapy. Post-contrast T1-weighted
MRI images are shown for two glioblastoma patients that would typically be separated into generic
groups: responder and stable disease. The radiation response parameter α gives an additional
quantification of radiation response for each patient.

Materials and methods

Radiation therapy model

We investigate an extension of the PI model (equation (1)) for untreated glioma growth to
include the effects of XRT using the classic linear-quadratic model for radiation efficacy.
Equation (2a) is the well-known linear-quadratic model for radiation efficacy (Hall 1994)
that relates the radiation Dose, defined in both space and time in units Gy (Gy = 1 J kg−1),
to a unitless effective dose E. The coefficients α (Gy−1) and β (Gy−2) are the radiobiology
parameters and determine the relative contribution of each term in the sum toward the total
radiation effect and are sometimes interpreted biologically as repairable single and lethal
double-strand breaks to the cell’s DNA, respectively (Hall 1994). The linear-quadratic model
is based on empirical dose-response data and is widely used in clinical applications. The ratio
of the parameters α/β represents the tissue response: for early effects, the ratio α/β is large
and α dominates for small doses and for late effects, the ratio α/β is small and β dominates
at small doses. In our model simulations, the ratio α/β is held constant throughout the tumor,
with α and the dose distribution determined by the individual patient data. Equation (2b) is
the probability of survival of glioma cells after the administration of radiation Dose such that
the larger the dose, the smaller the probability of survival:

E = α Dose + β Dose2, (2a)

S = exp(−E). (2b)

For each point in space and time, an effective dose and probability of cell survival can be
calculated that corresponds uniquely to the individual patient’s treatment plan and radiobiology
parameter (α). Increasing α decreases the probability of cells surviving, S, and therefore
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increases the probability of external beam radiation therapy (XRT)-induced cell death:

rate of change of
glioma cell concentration︷︸︸︷

∂c

∂t
=

net dispersal
of glioma cells︷ ︸︸ ︷
∇ · (D∇c) +

net proliferation
of glioma cells︷ ︸︸ ︷
ρc

(
1 − c

k

)
−

loss due to
radiation therapy︷ ︸︸ ︷

R(x, t, Dose) c
(

1 − c

k

)
, (3)

where

R(x, t, Dose(x, t)) ≡
{

0 for t /∈ therapy
(1 − S(α, β, Dose(x, t))) for t ∈ therapy.

Equation (3) is a straightforward extension of the PI model (equation (1)) to include the effects
of XRT, represented by the coefficient R in the loss term. The effect of XRT is incorporated
into model equation (1) by considering the loss of cells due to XRT in terms of a death
probability from equation (2b). R represents the effect of XRT on the tumor cell population
at a location x and time t where the effect is given by the probability of death (one minus the
probability of survival) from the linear-quadratic model of radiation efficacy. Methodology
and structure are detailed in Rockne et al (2009) and summarized in the supplementary material
(available at stacks.iop.org/PMB/55/3271/mmedia). The death probability is a function of the
linear-quadratic model parameters α (Gy−1) and β (Gy−2) and the radiation dose distribution
(Dose(x, t)) and is only applied during therapy. Similar to equation (1), the model for radiation
effect R is a net measure and considers the random damage, repair and delivery of radiation
to be upstream from the net deterministic measure of survival probability, although the linear-
quadratic model can be derived from stochastic principles (Sachs et al 2001).

Model assumptions

We assume XRT and its effect to be instantaneous, deterministic and estimated by the linear-
quadratic model and its corresponding probability of cellular survival/death. For low cell
densities, the effect of XRT is manifested as a fraction of cells killed as a result of XRT.
However, at large cell densities, it is assumed that the effect saturates in the same manner
as the net proliferation saturates. Thus, the radiation effect R has the effect of mediating the
net proliferation of the glioma cells to mimic a net slowing of proliferation in those regions
occurring as a result of cell crowding and depletion of the microenvironment. This assumption
is consistent with the classic radiobiological understanding that cells actively undergoing
mitosis are more susceptible to DNA damage (Hall 1994), which the linear-quadratic model
for radiation efficacy assumes to be the mechanism for radiation-induced cell death (Sachs
et al 1997, 2001, Cunningh and Niederer 1972). For simplicity in our initial investigation, with
the dose distribution and treatment schedule fixed, we regard α as our sole radiation efficacy
parameter and leave α/β fixed at 10 Gy to approximate the radio-responsiveness of early
responding tissue such as proliferating tumor cells (Hall 1994, Sachs et al 2001, Jones and
Dale 1995, 1999, Enderling et al 2006, Lee et al 1995, Garcia et al 2006). An explicit model
for the delivery of and response to chemotherapy is beyond the scope of this investigation;
however, we assume that the effect of concurrent chemotherapy is included in the net response
parameter α.

Patient population

Three females and six males, with a mean and median age of 58 and 56 years, respectively,
at the time of histologically diagnosed glioblastoma multiforme (GBM) (WHO grade IV)
(Kleihues et al 2002) consented to this study approved by our local institutional review board.

http://stacks.iop.org/PMB/55/3271/mmedia
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Table 1. Summary of model parameters and clinical information for all nine patients with
glioblastoma multiforme included in the study. Survival is calculated in months, relative to
the first MRI observation.

Patient Age EOR

T1 Gd
velocity
(mm/
year)

T2
velocity
(mm/
year)

D
(mm2/
year)

ρ
(/year)

αT1
Gd
(/Gy)

αT2
(/Gy)

Survival
from first
MRI
observation
(months)

Concurrent
chemo

1a 63 BX 50.9 32.1 18.43 35.13 0.244 0.162 88.0 TMZ
2a 43 BX 195.4 0.0 7.52 12.68 0.085 0.137 24.3 TMZ
3 53 BX 85.3 19.9 27.70 3.59 0.000 0.005 34.3 –
4 63 BX 83.8 21.9 7.88 15.24 0.004 0.000 13.2 TMZ
5 49 STR 42.3 66.9 8.90 50.29 0.222 0.265 18.8 BCNU +

TMZ
6a 73 BX 24.3 −61.6 10.82 13.68 0.023 0.076 40.3 TMZ
7 56 BX 53.1 11.2 50.71 13.88 0.016 0.028 12.8 TMZ
8 63 BX 20.1 44.1 12.64 7.99 0.016 0.032 15.6 TMZ
9 45 STR 1.9 21.1 6.56 17.04 0.115 0.084 21.3 TMZ

a indicates the patient is still alive.

In addition to XRT details, recursive partitioning analysis (RPA) (Shaw et al 2003) and extent
of resection (EOR) were recorded for each patient (table 1). All nine patients received XRT
and had at least two pre-treatment and one post-XRT pair of T1Gd and T2 MRI observations.

MRI segmentation

Gross tumor volume was calculated for each T1GD and T2 imaging pair through a semi-
automated technique based on background subtraction, which allows a user to select only
those voxels that contain a tumor-related abnormal signal (Ridler and Calvard 1978). Each
segmented volume is translated to a mean radius by supposing the geometry of a sphere with
equivalent volume: GTV = 4

3πr3.
We averaged the GTV found by at least two independent observers for each image. Pre-

treatment GTV measurements included regions of central necrosis (i.e. visible as hypo-intense
on T1Gd). Post-operative scans also included regions of necrosis but excluded the resection
bed from the GTV calculation, as the tumor cells are prevented from diffusing into that brain
space, which hypothetically contains no tumor cells, dead or alive.

Velocity of growth

Radial velocity of tumor growth was estimated using the slope of a line of best fit (linear
regression) between the pre-treatment radii obtained from both T1Gd and T2 MRI GTVs.
Mean and median T1Gd pre-treatment velocities for the population were 62 and 51 mm/year,
respectively, with mean and median of 43 and 21 days between pretreatment scans. Mean
and median velocities on T2 were 17 and 21 mm/year. We selected patients with at least
5 days between pre-treatment images and/or at least a 1 mm increase in tumor radius on T1Gd
in order to detect a significant non-zero velocity of growth. Fisher’s approximation for the
velocity of radial growth provides a relationship between the model parameters (D, ρ) and
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the measured velocity, v = 2
√

Dρ (Fisher 1937, Murray 2003). Table 1 shows the patient
characteristics.

Calculation of patient-specific untreated PI model parameters

As established by us elsewhere (Harpold et al 2007) the T1Gd MRI abnormality is associated
with increased vascularity and ‘solid tumor’, while the T2 abnormality is associated with a
low density of diffuse invasion (Harpold et al 2007), from which a tumor cell gradient (D/ρ)
is inferred. With the ratio D/ρ and velocity (v = 2

√
Dρ), both model parameters D and ρ can

be calculated for each patient, uniquely characterizing that glioma’s untreated growth kinetics
(table 1).

Model simulations

Three-dimensional simulations of untreated and XR-treated growth (equation (3)) supposing
spherical symmetry were performed for each patient using the function pdepe in MATLAB
(Skeel and Berzins 1990). A small, Gaussian distribution of 220 cells, or almost 1 mm3 of initial
tumor cells, is used to seed the tumor growth and is necessary to prevent gliomatosis cerebri,
which is a diffuse saturation of malignant cells throughout the brain without the formation of
a focal neoplasm (Rockne et al 2009). With the patient-specific PI model parameter values
estimated (as above), a virtual tumor was created for each patient that matched the kinetics
of that individual’s tumor. For each virtual patient, ‘clinical day zero’ was defined to be the
time point at which the simulated tumor volume matched the measured GTV from the first
T1Gd observation. Resection to whatever extent applicable was then modeled by truncating
the computational domain such that the simulated T1Gd radius matched that measured on the
post-operative MRI observation, with boundary conditions adjusted accordingly to prevent
tumor cells from migrating into the virtual resection cavity, following Woodward et al (1996)
and Swanson et al (2003) . Because of the assumption of spherical symmetry, only glioma
patients receiving a biopsy or less than 25% resection of their pre-operative GTV were selected.
For those patients with sub-total resections (STR), the spatial effect of surgical resection was
minimal and assumed to take place at the center of the spherically symmetric tumor by
matching the corresponding decrease in the measureable GTV. Patients receiving biopsy only
were not considered to have had a significant surgical intervention and therefore no surgery
was modeled.

Radiation therapy plan details and dose distribution

XRT protocols and prescriptions were available for each patient. Six of the patients in the
study received XRT at the University of Washington Medical Center (UWMC). The remaining
three patients were treated at the University of California in Los Angeles. In accordance with
the current standard of care at the UWMC, patients received 50.4 Gy to the T2-defined
abnormality with a 2.5 cm margin, in equal doses of 1.8 Gy/day for 6 weeks for a dose
of 54 Gy, followed by a boost defined by the T1Gd abnormality plus a 2 cm margin to a
total of 59.4–61.2 Gy, in equal doses of 1.8 Gy/day for 1 week, with treatment administered
on weekdays only. Spherically symmetric dose distributions were defined spatially by the
UWMC protocol unless otherwise specified by prescription (see the supplementary material
available at stacks.iop.org/PMB/55/3271/mmedia; Rockne et al (2009) for methodology).
Each simulated tumor received exactly the radiation dose and plan clinically prescribed, in
both space and time.

http://stacks.iop.org/PMB/55/3271/mmedia
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Figure 2. Spherically symmetric, radial tumor growth and XRT for patient 7 for six values of α

ranging from zero (no effect) to 0.018/Gy (high effect) in 0.003/Gy increments, with XRT interval
denoted by thick black lines (∼day 30–day 75). We see that the optimal value of α on T2 lies
between the fourth and fifth curves from the top. Two pre-XRT and one post-XRT observations are
shown. The asterisk indicates data point used to calculate an optimal value for α using a regression
with α and the error between simulated and actual target radius.

Calculation of the patient-specific radiation response parameter

After the establishment of clinical day zero within the simulation, surgery to whatever extent
was modeled, and then XRT was simulated to precisely follow the patient’s individual treatment
plan and time course relative to clinical day zero. Additionally, the day of the week on which
treatment began was recorded in order to simulate therapy taking place only on weekdays.
In order to estimate the value of the radiation model parameter α (Gy−1) (equation (2a))
for each patient, a range of values for α are chosen and XRT is simulated for each, with the
difference between the simulated T1Gd and T2 radii and the observed recorded for each patient
(figure 2). The first post-XRT MRI is considered as the ‘XRT target date’, with its
associated ‘target radius’. Increasing α decreases the probability of glioma cells surviving,
S (equation (2b)), and therefore increases the probability of XRT-induced glioma cell death.
Therefore, for fixed growth kinetics D and ρ, simulations using a large α correspond to a
large ‘effect’, or deviation from model-predicted untreated growth, while the values of α near
zero correspond to minimal to no deviation from the model-predicted untreated pattern of
growth. We therefore consider α as a quantification of the degree of response to XRT. Since
the relationship between D, ρ and α is nonlinear and spatially variable according to the patient-
specific dose distribution and schedule, XRT was simulated several times, with a wide range
of α values, yielding a relationship between α and the simulated imageable XRT response
unique to the patient. Regression was then performed to yield a value of α that minimized
the difference between the simulated and actual target radius, the accuracy of which is limited
only by the resolution of the in silico computational grid, which is 0.12 mm—far beyond
the most highly resolved MRIs considered in this study. To determine if there was any bias
in choosing either of the MRI-defined abnormalities as the target, optimal values for α were
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found using both T1Gd and T2 post-XRT target radii and are denoted as αT1Gd and αT2,
respectively (table 1).

Patients who were unable to meet the T1Gd or T2 post-XRT target radius for any
non-negative value of α were tabulated as having an α value of zero (see table 1 and the
supplementary material available at stacks.iop.org/PMB/55/3271/mmedia). These patients
had a velocity of growth during treatment greater than that measured prior to treatment. These
patients were unable to meet the post-therapy target radius without an accelerating effect of
XRT on the tumor growth (α < 0) which we assumed not to exist.

Error and uncertainty analysis

Latin hypercube sampling (LHS) (Helton and Davis 2002) was used to test the sensitivity
of model outcomes to perturbations in the original PI model parameters. A leave-one-out
cross-validation (LOOCV) (Shao 1993) was performed on the relationship between the model
parameters ρ and α to validate and assess the accuracy of our patient-specific XRT model
outcome predictions. Each patient was systematically removed from the population and a
new regression was established between α and ρ. Based on the new line of regression,
a value for α was computed for the patient removed and XRT simulated. The difference
between the simulated post-XRT tumor size and the data was defined to be the error in the
prediction. The median radial errors for T1Gd and T2 post-XRT tumor sizes were 2.4 mm
and 4.5 mm, respectively. By iterating through all nine patients in the population, error bars
were determined for each patient by taking the maximum and minimum values of the range
of the nine values of α determined by the leave-one-out process.

Metrics of response

Glioma response to therapy is multivariate, with the additive, compounding effects of surgical
resection and concurrent chemo-therapy influencing T1Gd and T2 abnormalities and GTVs,
respectively. We considered several metrics for quantifying response to XRT in order to
investigate their relationship to the radiation model parameter α.

• Last observation effect (LOE) is similar to that used for the response evaluation criteria
in solid tumors (RECIST) (Galanis et al 2006, Padhani and Ollivier 2001, Therasse et al
2006): the percent change in radius from the last pre-XRT observation to the first post-
XRT observation.

• Cell kill (CK) is defined as the model-predicted ratio of the total number of simulated
cells at the start to that at the end of therapy.

Patient-specific virtual controls

Following our previous work modeling XRT in individual gliomas patients (Swanson et al
2008a), we considered a fatal tumor burden (FTB) defined in terms of radius and compared
actual survival relative to the first MRI observation to that predicted by the attainment of a
FTB if left untreated using the patient’s specific model parameters and data.

Results and discussion

Simulations of XRT on nine patients with histologically diagnosed GBM (WHO grade IV)
suggest that response to therapy, measured by changes in GTV observed on T1Gd- and

http://stacks.iop.org/PMB/55/3271/mmedia
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Figure 3. Relationship between radiation response and tumor proliferation rate parameters α

(Gy−1) and ρ (1/year), respectively, with α calculated relative to changes in T2 GTV post-therapy
r = 0.89, p = 0.0007, N = 9. Error bars on ρ are calculated by propagation of error in pre-treatment
GTV as assessed by inter-observer variability of ± 1 mm in equivalent spherical radius. Error
bars in α are computed by taking the maximum and minimum values of α in a leave-one-out
cross-validation (LOOCV) technique.

T2-weighted MRI, can be predicted and quantified based on relationships between model
parameters and various measures of the XRT response and effect.

To our knowledge, this is the first model for estimating radiobiologic parameters for
individual patients, in humans, in vivo. Other models presented by Stamatakos and others
(Enderling et al 2006, 2007, Ribba et al 2006, Stamatakos et al 2006, 2007, Bauman et al
1999a, 1999b) either deal with tumor spheroids in vitro or have yet to be applied to a patient
population, and often rely on several parameters that cannot be tailored to the individual or
calculated in vivo.

Patient-specific net rate of proliferation (ρ) and radiobiologic response parameter (α) are
correlated

Each patient’s radiation response parameter α is strongly correlated to the pre-treatment net
proliferation rate ρ (figure 3, r = 0.89, p = 0.0007), suggesting that α can be predicted from
ρ for any individual patient pre-treatment (figure 3). From a mathematical perspective, this
correlation is not surprising since the model extension effectively varies only the proliferation
rate through the probability of cell death (1 − S) as determined via the linear-quadratic
model for radiation efficacy. However, the combination of spatial and temporal heterogeneity
of the administered dose adds formal complexity to what might otherwise be considered
a straightforward relationship between the two parameters. Moreover, the relationship
between α and ρ is an observed outcome from the data, which could easily have yielded a
nonlinear relationship between the model parameters. From a radiation oncology perspective,
the relationship between the proliferation rate and XRT response makes sense: actively
proliferating cells are more susceptible and have greater response to XRT (Wilson et al 2006).
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Table 2. Pearson correlation coefficient squared (r2) and p value for relationships between the
model radiation parameter α and measures of effect. Significant correlations are in bold.

Variable 1 Variable 2 r2 P value

α (/Gy) D (mm2/year) 0.08 0.468
α (/Gy) Last observation effect 0.25 0.166
α (/Gy) Total cells effect 0.71 0.002

Moreover, our computed values for α lie within published ranges (Garcia et al 2006, Qi et al
2006, Yang et al 1990) that use a variety of estimation methods, none of which are based
upon clinical imaging. This suggests not only that this model provides a novel technique
for assessing the untreated rate of invasion and proliferation of gliomas, but also that the
classically defined XRT response parameter α can be estimated from clinical imaging and can
potentially be predicted in vivo, prior to treatment.

Treatment response can be predicted in individual patients from pre-treatment imaging

Our ability to predict α from ρ prior to treatment was confirmed with a leave-one-out cross-
validation technique (LOOCV) (Shao 1993, Martens and Dardenne 1998) that, when translated
to the difference in radius between the simulation and actual imaging data, gives a median
error for T1Gd and T2 post-XRT tumor sizes were 2.4 mm and 4.5 mm, respectively. We have
estimated our inter-observer error tumor radius computed from the measurement of GTV to
be ± 1 mm. This suggests that the predictive relationship between α and ρ is at least greater
than the error expected in our data collection methodology and at the same time precise, given
the limited number of patients in the study. The LOOCV technique also demonstrates the
robustness of the prediction accuracy to outlying data points, such as patient 5. Although it
is not surprising that a LOOCV technique is able to re-capitulate results of a fitted parameter,
what is significant is that the model parameter ρ can be assessed prior to treatment. We can
use pre-treatment kinetics to stratify, in a quantitative manner, patients into those more or less
likely to respond to therapy prior to treatment.

Surprisingly, the radiation parameter α is not correlated to the rate of invasion D (r =
−0.35), suggesting that tumor response may be independent of the degree of invasiveness,
although the contribution of cells that lie below the threshold of detection cannot be
underestimated.

Standard treatment response metrics do not correlate with model measures of radiosensitivity

In order to compare our simulations to classical metrics of treatment response such as the
RECIST (Padhani and Ollivier 2001) or MacDonald criteria (MacDonald et al 1990), which
rely on changes in GTV prior to and immediately following therapy, we considered alternative
novel metrics of response. A less tangible, model-defined metric of cell kill provides a
model-specific perspective on radiation efficacy and is correlated to α, which follows the
interpretation of the linear-quadratic model as it relates to log CK. Table 2 summarizes the
correlations between the radiobiological model parameter α and response metrics.

These novel and patient-specific metrics of response stand in stark contrast to the current
schemes provided by the RECIST (Padhani and Ollivier 2001) and MacDonald criteria
(MacDonald et al 1990), which group patients into broad categories from stable disease
to complete response with very little gray area between them. In light of the generally



3282 R Rockne et al

poor response seen in this patient population across all response metrics, combined with
the overall poor response of high-grade gliomas to any treatment whatever, a more highly
resolved response scale is not only appropriate but could prove necessary in the future of
glioma treatment. Our model of glioma growth and response to XRT provides an opportunity
to develop response metrics that take into account invasive glioma cells that lie beneath the
threshold of detection for standard clinical imaging techniques such as T1Gd and T2 MRI and
to provide a more complete picture of disease response than those provided by the RECIST or
MacDonald criteria, which are based solely on MRI abnormality defined volumes. Moreover,
the last observation effect is not correlated with either ρ or α, suggesting that our definition
and quantification of treatment response are not essentially equivalent to already established
response metrics.

Metrics of glioma growth and treatment response are robust to uncertainty in GTV

We performed LHS uncertainty analysis on all model parameters: D, ρ and α. Specifically,
we performed LHS on the parameter ranges resulting from a ±1 mm deviation in radius
to our model parameter estimation. Unlike standard sensitivity analysis for which only one
parameter is typically varied, in LHS all parameters (D, ρ, α) are allowed to vary at the same
time. We applied LHS specifically to patient 6, with a sample size of 100, in which each
simulation is a manifestation of randomly sampling parameter values from each respective
parameter’s associated confidence interval. We assumed the parameter values to be normally
distributed. The resulting collection of virtual tumors showed an amplifying uncertainty in
our result as the virtual tumor progressed through simulated XRT. However, the magnitude of
even the largest variation from either the mean or median of the simulation remained within
our LOOCV envelope of 1.8 mm, suggesting that our model is robust to variations in both the
untreated (D, ρ) model parameters and our radio-biological response parameter (α) (see the
supplementary material available at stacks.iop.org/PMB/55/3271/mmedia).

Effects of concurrent chemo-therapy and other medicines, including steroids prior to and
during treatment, were considered to be incorporated into the radiation parameter α, and
therefore the value of α may be overestimated relative to XRT administered without chemo-
therapy. We acknowledge the role chemo-therapy can and surely does play in tumor response
to therapy, but at this time we do not explicitly incorporate its effects into the model. Swanson
et al (2002a) have previously investigated the role of steroids on the estimation of the ratio of
the PI model D/ρ and showed no statistical difference between two populations of patients:
one receiving steroids and the other not.

XRT response metric is robust to choice of MRI modality

Because T1Gd MRI is thought to represent the location of the bulk tumor mass as characterized
by the leaky vasculature, it can be considered an indicator of tumor growth. It may not,
however, be adequate at representing response to therapy, particularly XRT, as the XRT
damage may not cause rapid shrinkage of the T1Gd abnormality. It is nevertheless used as
a clinical indicator (MacDonald et al 1990, Padhani and Ollivier 2001) with some debate as
to its true relationship to response (de Wit et al 2004, Tsien et al 2007). Similarly, increased
signal from radiation-induced inflammation on T2-weighted MRI may be mistaken for actual
disease-related edema. Interestingly, our values for the radiation parameter α computed using
T1Gd and T2 target radii were highly correlated, somewhat mitigating concern over which
modality to select as a target. Regardless of the interpretation of T1Gd and T2 as indicators
of response, this modeling approach connects the cell gradient (represented by the ratio of

http://stacks.iop.org/PMB/55/3271/mmedia
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untreated model parameters ρ/D) to T1Gd and T2 MR imaging modalities. Therefore, any
change in GTV pre- to post-therapy is related to a corresponding change in the local cell
density. Response rates as measured with the T1Gd radius as target versus using T2 are
highly correlated with r = 0.89, p = 0.0006. The T1Gd response parameter was also highly
correlated with the net proliferation rate, r = 0.89, p = 0.0007.

Treatment response and pseudo-progression

In order to address concerns regarding robustness of our results to ‘pseudo-progression’ (de
Wit et al 2004, Taal et al 2008) of disease induced by therapy, we performed our analysis
using the second post-XRT MRI observation (instead of the first) as our target for calculating
α. The second MRI observation post-XRT generally occurred 50–60 days after the end of
therapy. This simply resulted in a translation of the range of α values, leaving all results intact
(data not shown). This suggests that the value of α depends on the target observation time
relative to the end of therapy and calls for a more detailed modeling approach that incorporates
delayed radiation effects. Nevertheless, the robustness of the results relative to the time of the
target observation suggests that the model remains useful as a predictor of response, as long
as the limitations of the model prediction beyond the target date are kept in mind.

Efficacy of radiotherapy is predictable in individual glioblastoma patients in vivo

This pilot study establishes a methodology that can be readily translated into a full three-
dimensional, anatomically accurate, patient-specific simulation of virtual tumor growth and
response to XRT. Further model development will include focal XRT resistance in the form
of an oxygen enhancement ratio (OER) in addition to the linear-quadratic model based on
regions of hypoxia as defined by the 18F-Flouromisonidazole (FMISO) radiotracer used in
PET imaging (Spence et al 2008). Additionally, model extensions to incorporate normal tissue
toxicity and delayed treatment effects will be investigated with the use of three-dimensional
XRT dose plans and patient-specific tissue segmentation and anatomy. Optimization of
treatment through altered fractionation and/or treatment field design can be investigated and
compared to virtual controls, either untreated or with the conventional therapy course.
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