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Abstract
Glioblastomas are the most aggressive primary brain tumors,
characterized by their rapid proliferation and diffuse infiltra-
tion of the brain tissue. Survival patterns in patients with
glioblastoma have been associated with a number of clinico-
pathologic factors including age and neurologic status, yet a
significant quantitative link to in vivo growth kinetics of each
glioma has remained elusive. Exploiting a recently developed
tool for quantifying glioma net proliferation and invasion
rates in individual patients using routinely available magnetic
resonance images (MRI), we propose to link these patient-
specific kinetic rates of biological aggressiveness to prognos-
tic significance. Using our biologically based mathematical
model for glioma growth and invasion, examination of serial
pretreatment MRIs of 32 glioblastoma patients allowed
quantification of these rates for each patient's tumor. Survival
analyses revealed that even when controlling for standard
clinical parameters (e.g., age and Karnofsky performance sta-
tus), these model-defined parameters quantifying biological
aggressiveness (net proliferation and invasion rates) were
significantly associated with prognosis. One hypothesis
generated was that the ratio of the actual survival time after
whatever therapies were used to the duration of survival pre-
dicted (by the model) without any therapy would provide a
therapeutic response index (TRI) of the overall effectiveness
of the therapies. The TRI may provide important information,
not otherwise available, about the effectiveness of the treat-
ments in individual patients. To our knowledge, this is the
first report indicating that dynamic insight from routinely ob-
tained pretreatment imaging may be quantitatively useful in
characterizing the survival of individual patients with glio-
blastoma. Such a hybrid tool bridging mathematical modeling
and clinical imaging may allow for stratifying patients
for clinical studies relative to their pretreatment biological
aggressiveness. [Cancer Res 2009;69(23):9133–40]

Introduction
Glioblastomas are the most aggressive primary brain tumors,

characterized by their rapid and diffuse infiltration of the adja-
cent normal-appearing brain tissue. Several clinicopathologic fac-
tors have been found to allow stratification of glioma patients
according to probable survival times: (a) for the tumor: type
and grade, size, and site; (b) for the patient: age and neurologic
functioning, and history of previous treatment (extent of surgery,
X-ray irradiation, chemotherapy; ref. 16). None of these factors
concerns patient-specific measures of the in vivo kinetics of the
tumor itself—partially a result of the lack of tools to quantify
overall growth kinetics of a tumor capable of both extensive in-
vasion peripheral to the imaging abnormality and aggressive rates
of cellular proliferation. We have recently developed a novel bio-
mathematical model for glioma growth and invasion that allows
the translation of routinely available, serial pretreatment magnet-
ic resonance images (MRI) into patient-specific net rates of pro-
liferation and dispersal of glioma cells (5, 17). It is the purpose of
this presentation to show statistically that these two new mea-
sures of biological aggressiveness offer prognostic information in-
dependent of the classic clinicopathologic features and thus allow
a more accurate prediction of the duration of survival of glioblas-
toma patients.

The cell density gradient implicit to these invasive tumors
suggests that imaging reveals only the “tip of the iceberg” of
each glioma, with a significant portion of the glioma cells
already invaded peripheral to the imaging abnormalities as
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Major Findings
Biomathematical modeling combined with routinely
available serial pretreatment MRIs can be used to
quantify patient-specific kinetic rates of net glioma cell
proliferation and invasion that are prognostically
signif icant even when controll ing for standard
prognostic clinical parameters. Although further patient
studies are necessary, these results illustrate that this
biomathematical model provides a unique tool for
quantifying the glioma phenotype for each individual
patient and suggest a role for the development of
patient-specific “virtual controls” for treatment design
and assessment of treatment effects.
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shown in Fig. 1A. The biomathe-
matical model, combining the
two key net rates, proliferation
(ρ) and invasion (D), has accu-
rately quantified the diffuse inva-
sion as well as the overall growth
kinetics of gliomas (5, 17). Specif-
ically, based on this model, we
have developed a technique for
translating changes seen on seri-
al MRIs pretreatment into mea-
sures of net proliferation and
net invasion of glioma cells (17).
Figure 1B shows the model-
predicted diffuse gradient of
glioma cells predicted by simula-
tion of the biomathematical
model with patient-specific
model parameters (D and ρ)
shown in Table 1 for patient 11.
The color gradient in Fig. 1B re-
presents the model-simulation
of glioma cellular density and
reveals the diffuse nature of the
lesion peripheral to the nodule
seen on T1Gd MRI (dark gray
contour). The ratio ρ/D can be
interpreted as the relative steep-
ness of the gradient of invading
cells peripheral to the frank ab-
normality seen on T1Gd imaging
(gross pathology or histology).
Alternatively, the inverse of this
ratio (D/ρ) has been termed the
“invisibility index” and can be
used to estimate the number of
the diffusely invaded tumor cells
peripheral to (and therefore in-
visible to) the imaging abnor-
mality (10). Autopsy studies
have revealed the remarkable ac-
curacy of these model-predicted
gradients of invasion in other
glioblastoma cases for which
autopsy was available (13).

In addition to quantifying
the diffuse extent of gliomas, a
novel prediction of the model's
combination of an exponential
net proliferation rate (for low
cell densities) and a diffuse in-
vasion pattern is an asymptotic
overall linear pattern of radial
expansion of the detectable ab-
normality on imaging, depen-
dent on both dispersal, D, and
proliferation, ρ, with an overall
velocity defined by Fisher's
approximation: v ¼ 2

ffiffiffiffiffiffiffiffi
D ρ

p
. This

consistent growth pattern has
been validated in a variety of

Quick Guide to Equations and Assumptions

The initial goal of our research was to see if we could develop a mathematical model of gliomas
that would provide helpful insight into how gliomas behave. We decided to build the model from the
bottom up, adding new features only as they became necessary, beginning with the definition of a
cancer cell as proliferating without control, invading locally, and metastasizing distantly, the last feature
being unnecessary to consider further for glioma cells because they generally do not metastasize.

The resultant minimal model we chose was a reaction-diffusion partial differential equation (1, 2)
used to describe the density of glioma cancer cells (c) in terms of two net rates: motility (D) and
proliferation (ρ).

Equation 1:

rate of change of
glioma cell density

net dispersal
of glioma cells

net proliferation
of glioma cells

@c
@t

¼ r � ½DðxÞrc � þ �c 1
 c
k

� �

In words, at every location in the brain (x), the model equates the rate of change of the glioma cell
density (c) at that location with the net dispersal (D) of the glioma cells near that location plus the net
proliferation (ρ) of glioma cells locally. This model describes the density of tumor cells (and not individual
cells) and therefore reflects the net rates of proliferation and motility for the entire population of tumor
cells. That is, these net rates are the net effects of and downstream from actual determinants (genetic or
other) of individual cell behavior. The Brain Web (3, 4) provides the anatomic link (accurate to 1 mm3)
between virtual and real images. What this all means is that we can predict and follow the growth of any
glioma from its point of origin on an anatomically accurate brain phantom through those first two pre-
treatment scans and throughout the tumor's subsequent natural history, including some of the theoret-
ically simpler treatments such as surgical resection (5, 6).

Major Assumptions of the Model

Fickian diffusion has been used to quantify the random motility of a variety of invading cells (7)
and is implemented in our model to represent the spatial invasion of the glioma cells at a rate D
(mm2/y). This rate can vary depending on the location in the brain (x), quantifying the observation
that glioma cells migrate more quickly in white matter than they do in gray (8, 9). The net prolifer-
ation term includes mitosis, apoptosis, and other cell loss mechanisms and is assumed to be logistic
such that the net proliferation rate (ρ, 1/y) is lower in regions of high cell density (where c ≈ K) than
in regions of low cell density (where c ≪ K), K being the carrying capacity of the brain tissue. All
glioma cells are assumed to be identical, about 20 μm in diameter, but do not affect the environment
of gray and white matter in which they move freely. Although these last assumptions are quite un-
realistic, they can be modified, if necessary, but they have served us well in capturing tumor dynamics
in vivo thus far (2, 10, 11) in many iterative comparisons of theory and the real world as reviewed by
Harpold and colleagues (10).

Although there are certainly a variety of cellular subpopulations involved in glioblastoma growth, ρ
is a net measure of the proliferative capacity and D is a net measure of the invasive capacity of the
overall dominant phenotype. As explored in detail elsewhere (2), an intuitive (and mathematical) anal-
ysis of polyclonal tumors within a confined space, with each subclone having a quantitatively different
biological aggressiveness (quantified by net rates of migration and proliferation), typically leads to the
overall pattern of growth being dominated by the most aggressive clone (2). This practical intuition is
used routinely in cancer research laboratories to (partially) explain the observation that serial passages
(even only a few) of a cell line leads to identification of the most aggressive phenotype because it
dominates each culture. Conversely, others have suggested that microenvironmental influences exert
selection pressures on the subclones, resulting in dominance of the most aggressive clone (12). Thus,
with a variety of explanations, it is intuitive that a single measure of the dominant net proliferation
rate ρ and the dominant net migration rate D would be considered as candidates for prognostic
markers.

The first formulation (Equation 1) led to Fisher's approximation (v ¼ 2
ffiffiffiffiffiffiffiffi
D ρ

p
) and the suggestion

that the radius should increase linearly with time (asymptotically) as the “traveling wave” (13) spreads
forward. This was the first suggestion that the classic simple exponential doubling of the volume was
far from correct and was soon proved correct for low-grade and high-grade gliomas (13, 14). The next
suggestion was that less than gross total resection (GTR) produced no improvement in duration of
survival, and with GTR, not much more, with recurrences occurring where the residual glioma was
most concentrated, typically at the surgical margin (5, 15). We assume that D and ρ remain constant
for long segments of the tumor's course, which is consistent with our data for long-term untreated
follow-up of gliomas (10).

ggg
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gliomas (13, 14) and has already been shown to be a prognostic
indicator in low-grade gliomas (18, 19). In addition to relating the
overall velocity of radial expansion on MRI to a net combination of
the invasiveness and net proliferation of the glioma cells, the indi-
vidual parameter values, D and ρ, can be calculated from serial pre-
treatment imaging for each individual contrast-enhancing glioma
(5, 13, 20, 21). These parameters are characteristic for each patient's
tumor and allow for a dynamic characterization of disease response
to any given treatment by providing an untreated virtual control
(UVC) against which to compare actual tumor behavior. We will
refer to this ratio as the therapeutic response index (TRI), which
is described as a fraction of the time to fatal tumor burden (FTB).

Our hypothesis is that our biomathematical model–based net
measures of proliferation and invasion rates provide novel insight
into the overall glioma phenotype for each patient in vivo and are
thereby prognostically significant. In this study, we considered 32
glioblastoma patients with serial pretreatment imaging to allow
quantification of a net proliferation rate and a net invasion rate
for each glioma. Using proportional hazard survival analyses, we
first assessed the prognostic significance of these biomathematical
model parameters relative to standard clinicopathologic para-
meters. Next, using the model-predicted survival of each patient's
UVC, we assessed the net increase in actual survival (with treat-
ment) for each patient. Complementary to the proportional hazard
survival analysis, we found that those patients with the highest net
proliferation rate were most likely to benefit significantly from
therapy, consistent with our recent finding about radiotherapy
(22). That some glioblastomas do not respond significantly to cy-
totoxic therapies merely confirms the wide range of growth rates,
extending into the low ranges, where X-ray therapy (XRT) and che-
motherapy are generally thought be less effective; the only problem
with that thought being that net proliferation rates of gliomas
could not previously be accurately measured.

Materials and Methods
Patient population. The two main criteria for inclusion in the patient

population were (a) a diagnosis of WHO grade 4 glioblastoma and (b) at

least two gadolinium-enhanced T1-weighted (T1Gd) and T2-weighted (T2)
MRIs before any surgical or treatment intervention to calculate the velocity
of radial expansion and the biomathematical model parameters, D and ρ.
To control for the role of heterogeneity in the primary treatment as it af-
fects survival, we accepted only patients receiving standard conformal ra-
diation therapy to a dose of at least 48 Gy (one patient; for others, 59.4–69
Gy). Of the 32 patients identified, 17 received concurrent radiation and
temozolomide chemotherapy as their primary therapy (summarized in
Table 1). Twenty-one of the patients were diagnosed and treated at the
University of Washington Medical Center, six at the SFC Brain Imaging
Research Centre at the University of Edinburgh (20), and the remaining five
at the University of California at Los Angeles Medical Center. Patient data
were accrued following Institutional Review Board–approved protocols.

As outlined in Table 1, 25 of the 32 patients had Karnofsky performance
status (KPS) scores at diagnosis ranging from 60 to 100 (median, 80), and 32
had ages ranging from 22 to 76 (median, 55); 22 received either a biopsy or
subtotal resection (STR) and the other 10 received a gross total resection
(GTR). The Radiation Therapy Oncology Group (RTOG) recursive partition-
ing analysis (RPA) ranged from class III (17.1 mo expected median survival)
to class IV (11.2 mo) and class V (7.5 mo; ref. 23). Due to the fairly small
number of patients in each RPA class, the survival analysis was done treat-
ing RPA as a dichotomous variable, dividing at RPA III and IV (n = 19)
versus RPA V (n = 10).

MRI segmentation and tumor growth kinetics of the UVC. Model
parameters for tumor growth kinetics (D and ρ) were calculated from
two pretreatment MRIs as reviewed by Harpold and colleagues (10) and
applied by Swanson and colleagues (5, 13, 21) to defined tumor volumes
seen on T1Gd and T2. Velocities of radial expansion were computed as
the average linear rate of increase in mean radius between two pretreat-
ment observations on T1Gd. The ratio ρ/D was determined from compar-
ison of the tumor volumes seen on T1Gd and on T2 at a single time point.
Details of the sensitivity of model parameters to uncertainty in the mag-
netic resonance tumor volume measurements are provided in Supplemen-
tary text and Supplementary Table S1.

Predicting untreated survival time of UVCs and the TRI. Following
the protocol described in ref. 19, the untreated survival time for the UVC
was estimated by developing the concept of a fatal tumor burden (FTB),
either a size (35 mm radius) of the “solid tumor” as seen on T1Gd MRI or
a total number of cells visible or invisible (1.1 × 1011; ref. 20)—see Table 1,
Supplementary Table S1, and Supplementary Fig. S1. The Munro-Kellie
hypothesis (24) explains why brain tumors might actually have a FTB with
a fixed volume of the skull. Both FTB end points yield practically the same

Figure 1. A, tip of the iceberg analogy showing a threshold of detection based on concentrations of tumor cells (as well as leaky blood vessels) contributing to a
gradient of glioma cells extending well beyond the T1Gd MRI–defined threshold of detection and even beyond the T2-defined threshold. Our biologically based
mathematical model quantifies this growth and invasion of the glioma cells contributing to this overall profile by rates of net proliferation (ρ) driving the concentration of
cells up and net dispersal (D) driving the concentration of cells peripherally. B, model-predicted diffuse T2 gradient of glioma cells predicted by simulation of the
biomathematical model on an anatomically accurate brain phantom (3 and 4) using model parameters (D and ρ) specific to patient 11 in Table 2. The T1Gd
MRI–detectable edge of the lesion is superimposed as a dark gray contour.

Prognostic Significance of Glioblastoma Growth Kinetics
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answer (see Supplementary Fig. S1) and lead naturally to the TRI. The TRI is
the ratio of the actual survival of the patient to the model-predicted survival
of that patient's UVC.

Statistical methods. Survival analysis was done using Cox proportion-
al hazard regression (25) implemented in S-PLUS (26). For patients still
alive, standard censoring procedures were taken using survival in days
from the date of operation or biopsy. Significance was determined by
log-rank P values.

Results
Table 1 summarizes the pretreatment clinical characteristics

and treatment details of the patients as well as the MRI measure-
ments and related biomathematical model parameter estimates of
proliferation and migration kinetics for each patient characterizing
their UVC. The median net proliferation rate, ρ, of 15/y corre-

sponds to a net cellular doubling time of 17 days and is consistent
with reported estimates (27). The net migration rates, D (3.2–468.9
mm2/d; median, 29.7 mm2/d), are similar to the random motility
rate estimates of glioma cells observed under a variety of experi-
mental conditions (9).

Survival analysis suggests that the UVC proliferation and
invasion kinetics are significant. The results of univariate Cox
proportional hazard analysis are summarized in Table 2. In univar-
iate analysis, the only significant predictors found were the UVC
estimates for tumor net proliferation and invasion kinetics, ρ and
ρ/D (P < 0.04 and P < 0.02). Among the standard clinicopathologic
factors, RPA was the closest to reaching significance in univariate
analysis (P < 0.06).

Although there are a variety of multivariate models to consider,
given the limited size of our population, we retained only the

Table 1. Summary of patient data

No. Age
(y)

Sex KPS EOR RT
dose
(Gy)

Survival
(d)

RPA
class

TMZ T1Gd
radius
(mm)

T2
radius
(mm)

T1Gd
velocity
(mm/y)

D
(mm2/
y)

ρ
(1/y)

Time to
FTB

TRI
cells

TRI
radius

Cells
(d)

Radius
(d)

1 54 F 80 GTR 61.2 1,027* IV no 7.5 11.2 67 19.4 57.3 160 151 6.4 6.8
2 44 F 80 STR 61.2 410 IV no 13.4 21.8 469 316.7 173.6 16 17 25.6 24.4
3 40 F 100 STR 60.4 617 III yes 6.8 10.8 16 5.1 12.3 686 656 0.9 0.9
4 73 F 80 Biop 48.6 91 V no 27.2 33.7 33 17.4 15.4 81 87 1.1 1.0
5 47 M 70 STR 61.2 551 IV yes 12.4 15.2 54 11.5 64.0 163 152 3.4 3.6
6 63 M 90 Biop 59.4 115 V yes 20 20.8 38 1.3 272.7 119 144 1.0 0.8
7 53 F 70 Biop 61.2 377 V yes 5.5 19.6 53 50.7 13.9 171 203 2.2 1.9
8 70 M 70 Biop 61.2 691* V yes 16.6 23.1 40 21.0 18.8 170 169 4.1 4.1
9 51 F 100 STR 59.4 1,273 IV no 8.3 13.7 9 3.9 5.5 1,092 1,048 1.2 1.2
10 76 M 80 GTR 61.2 351 IV no 7.5 7.6 10 0.3 81.7 732 1,057 0.5 0.3
11 65 F 70 GTR 61.2 446* IV yes 11.2 15.8 40 15.2 26.7 226 216 2.0 2.1
12 57 M 90 GTR 61.2 518* IV yes 17.4 27.7 57 47.1 17.3 99 113 5.2 4.6
13 60 M 90 GTR 61.2 491* IV yes 10.3 16.1 29 13.0 15.8 325 314 1.5 1.6
14 63 F STR 60 91 no 12.9 28.9 25 29.4 5.1 238 329 0.4 0.3
15 52 M 90 GTR 60 345* IV yes 3.8 9.6 12 5.0 7.3 971 941 0.4 0.4
16 74 F 60 GTR 61.2 572 V no 18.1 21.6 3 0.9 2.9 2,052 1,928 0.0 0.0
17 51 M 70 STR 60 347* IV yes 14.8 22.7 19 12.0 7.5 377 390 0.9 0.9
18 47 M 90 GTR 60 191* III yes 19.2 30 58 49.9 16.8 84 100 2.3 1.9
19 53 M 90 GTR 61.2 417 IV yes 9.7 22.3 31 28.6 8.2 261 302 1.6 1.4
20 49 F 80 STR 61.2 483 IV no 21.8 30.8 98 71.0 33.8 44 49 11.0 9.8
21 74 M 80 Biop 59.4 823 V no 0 19 14 15.5 2.9 539 946 1.5 0.9
22 58 M 90 Biop 65 453 V yes 8.6 16.2 11 6.2 4.6 902 909 0.5 0.5
23 58 M 70 STR 59.4 700 IV yes 23 32.1 43 31.9 14.5 86 102 8.1 6.9
24 57 M 90 STR 59.4 2,048* IV yes 21.8 28.4 7 3.9 3.3 655 679 3.1 3.0
25 58 F 80 Biop 69 375 V yes 7.3 9.2 23 3.3 40.3 462 442 0.8 0.8
26 45 M 100 STR 61.2 334 III yes 10.7 15.3 39 14.4 25.6 242 230 1.4 1.4
27 49 F GTR 60 543 III/IV no 10.3 14.5 26 8.5 19.8 368 348 1.5 1.6
28 50 M STR 60 399 no 15.3 19.9 27 9.7 18.3 284 270 1.4 1.5
29 22 M STR 60 415 III/IV no 16.4 24.1 43 27.0 17.3 152 157 2.7 2.6
30 64 M Biop 60 82 V no 21.5 26.1 24 9.1 15.8 216 206 0.4 0.4
31 71 M STR 60 260 no 18.1 29.7 23 21.6 6.2 217 266 1.2 1.0
32 50 M Biop 60 487 V no 20.9 29.9 54 40.0 18.3 85 95 5.7 5.1

NOTE: Summary of patient clinical and treatment data as well as patient MRI data, related model-derived parameter estimates, and the model-
predicted survival (if untreated) defined as the time required for the untreated virtual control to attain a fatal tumor burden (FTB) — either MRI
detectable radius or total number of diffusely invaded glioma cells. Lastly, the therapeutic response index (TRI) tabulates the ratio of the actual
survival time to the model-predicted survival time (if untreated).
Abbreviations: RT, radiation therapy; TMZ, temozolomide; Biop, biopsy.
*Censored data.
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terms that were closest to significance in the univariate analysis.
To control for these known prognostic factors, multivariate
survival analysis (Table 3) was done controlling specifically for
RPA classification and the model-defined UVC measures. Consis-
tent with the finding of Stupp and colleagues (28) showing
improved survival (17 patients who received temozolomide con-
current with primary radiotherapy), a chemotherapy flag was
added to the multivariate analysis (28). Even when controlling
for these known clinical factors in multivariate analysis, the bio-
mathematical model parameters for tumor kinetics, ρ and ρ/D,
remained significant (P < 0.02), whereas neither RPA nor the con-
current chemotherapy flag attained further significance. The log
hazard ratio coefficients resulting from the multivariate Cox mod-
el indicate that a 19/y increase in ρ (equivalent to a decrease of
13 days in the glioma cell doubling time) or a 1.3/mm2 increase in
ρ/D would be associated with a 50% decrease in survival. Com-
parison between the ρ and ρ/D multivariate models (in terms of
the logarithm of the partial likelihood) shows no clear advantage
for either measure of glioma growth kinetics. Further analysis is
required to reveal the relative importance of these two means of
quantifying glioma aggressiveness.

UVCs in predicting patient-specific survival. Next, we asked
the question: Does the baseline untreated growth and invasion ki-
netics of each patient's UVC differentiate patients that will survive
longer or shorter than that would be expected by their RPA clas-
sification (Fig. 2)? We used the RPA-associated median survival
times to divide each group into two subgroups, short and long sur-
vivors relative to their RPA-associated median survival. A compar-
ison of the ratio of the patient's actual survival time to the median
survival associated with each patient's RPA classification com-
pared with each patient's UVC velocity (Fig. 2A) or proliferation
rate ρ (Fig. 2B) reveals a striking pattern, suggesting that only tu-
mors with low velocity of radial expansion on T1Gd (v < 20 mm/y
in Fig. 2A) or low net proliferation rate (ρ < 10/y in Fig. 2B) survive
longer than the median RPA prognosis. Further, only patients with
high velocity (v > 20 mm/y in Fig. 2A) or high net proliferation rate
(ρ > 10/y in Fig. 2B) survived less than the median RPA prognosis.

TRI is elevated in highly proliferative tumors. Each patient's
UVC also allows for estimation of a model-predicted untreated sur-
vival time for the UVC. This allows creation of a TRI defined as the

ratio of the patient's actual survival to the survival of their UVC
defined as the time required to attain an appropriate fatal tumor
burden (Table 1). Using our TRI, we begin our analysis of individ-
ual patients. A quick glance at Fig. 3A suggests a random distribu-
tion of the actual (treated) survival versus predicted (untreated)
survival of the UVCs, with 8 patients practically on the line of
equality of predicted and actual (TRI = 1.0), 6 below the line,
and 18 above the line. By contrast, Fig. 2C and D shows that those
tumors that are most likely to have a TRI significantly greater than
1 are those with a high velocity (v > 30 mm/y in Fig. 2C) and an
elevated net proliferation rate (ρ > 10/y in Fig. 2D).

A closer analysis of the individual results allows estimates of
the specificities and sensitivities of potential predictors of good
response to therapy (TRI > 1.5, those surviving 50% longer then
their virtual control if untreated). These estimates are plotted in
Fig. 3B. That is, we hypothesize that because both radiotherapy
and chemotherapy predominantly target proliferating cells, those
tumors with high net rates of proliferation (high ρ) will have the
largest TRI (largest deviation from their UVC), although they
may not survive the longest overall because tumors with high
ρ are aggressive overall (Tables 2 and 3). A similar analysis
was done with patients with KPS with a cutoff of 70, RPA with
a cutoff of V, GTR versus biopsy/STR, and whether the patient
received the Stupp protocol of XRT concurrent with temozolomide
chemotherapy as their primary therapy. This analysis (Fig. 3B)
reveals that using only a single parameter, ρ with a cutoff of
14/y, is the most sensitive and specific in predicting those patients
who will have a TRI >1.5. We explored the benefit of combining
this threshold for ρ with the standard clinical parameters [KPS,
RPA, extent of resection (EOR), and Stupp protocol] to find any
synergistic effect on combining these markers. Figure 3B shows
that the most favorable combination is a threshold of 14/y for ρ
and RPA < V.

Table 3. Multivariate analysis of survival with RPA, a flag
for receiving temozolomide chemotherapy concurrent
with primary radiotherapy, and the biomathematical
model parameters for net rates of invasion (D) and
proliferation (ρ)

Cox model covariates Log hazard ratio coefficient (SE) P

RPA 0.89 (0.47) 0.06
Concurrent chemotherapy −0.19 (0.47) 0.68
D 0 (0.00) 0.2
Log-partial likelihood 5.1

RPA 0.88 (0.45) 0.05
Concurrent chemotherapy −0.32 (0.45) 0.48
ρ 0.01 (0.00) 0.02
Log-partial likelihood 7.94

RPA 0.87 (0.46) 0.06
Concurrent chemotherapy −0.22 (0.46) 0.63
ρ/D 0.01 (0.00) 0.02
Log-partial likelihood 7.63

NOTE: The log partial likelihood is used to assess the significance of
the entire model, whereas the log hazard ratio coefficients are used to
assess the relative significance of each covariate.

Table 2. Univariate analysis of survival for standard
clinical parameters as well as parameters used by or
generated from the biomathematical model

Cox model covariates Log hazard ratio coefficient (SE) P

Clinical parameters
RPA 0.84 (0.45) 0.05
Concurrent chemotherapy −0.53 (0.43) 0.21
KPS −0.01 (0.02) 0.79
EOR (biopsy/STR vs GTR) −0.09 (0.45) 0.85
Age −0.002 (0.02) 0.91

Modeling/imaging parameters
rT1Gd (mm) 0.02 (0.03) 0.58
rT2 (mm) 0.02 (0.03) 0.58
T1Gd velocity (mm/y) 0.002 (0.00) 0.47
T2 velocity (mm/y) 0.004 (0.00) 0.21
D (mm2/y) 0.003 (0.00) 0.35
ρ (1/y) 0.01 (0.00) 0.03
ρ/D (1/mm2) 0.01 (0.00) 0.01

Prognostic Significance of Glioblastoma Growth Kinetics
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Discussion
The real world can be divided into two unequal populations: a

relatively large number of patients and a relatively small number of
therapists. Most likely, from time to time, many individuals in both
groups probably ask if there are any controls that have taken this
treatment and gotten better and other controls who have gotten
worse. Both “controls” being exactly like the patient about to be
treated, not just an average individual who might not even resem-
ble the present patient as to age, gender, etc., and even more im-
portantly, with exactly the same disease, at the same location and
at the same stage, etc., wouldn't it be nice to have an UVC (not a
real live twin who could not be ethically treated or not)? Such has
been the target of our research for the last several years: to develop
such a control for each of our patients with a glioma, especially a
glioblastoma, and to develop a virtual control that has all the nec-
essary and sufficient characteristics of the glioma that could be
treated or not to compare with the real patient at hand. We believe
we have such a model and have given it a trial in the present ar-
ticle: Thirty-two real glioblastomas each matched exactly with
those characteristics that should repeat the real course from its
origin through diagnosis and treatment to death. In summary, all
we need are two sets of MRIs (pretreatment) from which to mea-
sure the velocity of radial expansion and to calculate the net rates
of dispersal and proliferation of the UVC.

Because the concept of a virtual control (our UVC) is new, perhaps
even unique to our investigative group, we began the presentation of
our results with classic statistics with which the reader might be

more familiar to show that our criteria have some comparability
in the standard scheme of survival analysis as well as having some
value in searching for other interesting details. These details on the
evaluation of the individual patients can be approached by our novel
biomathematical model, but not by ordinary statistical approaches.

Stratification of glioblastoma patients according to probable
prognosis has relied predominantly on clinicopathologic factors in-
cluding age, neurologic status, KPS, EOR (29–32), and RPA (23).
The relatively few studies that have sought to estimate the prolif-
erative aggressiveness of glioblastomas in vivo have focused on
tissue-based histologic analysis, such as MIB-1 labeling index
(33, 34), or novel imaging agents, such as [18F]fluorothymidine pos-
itron emission tomography (PET; refs. 35–37). Histologic estimates
for proliferation rate with the Ki-67 (MIB-1) labeling index, bromo-
deoxyuridine (BrdUrd) labeling index, and flow cytometry have
predominantly suggested differences in these measures across
grades of gliomas but not necessarily among WHO grade 4 glio-
blastomas (33, 34, 36). Imaging cellular proliferation using fluor-
othymidine PET (36) has been found to result in prognostically
significant estimates of proliferation across grades of gliomas. In
addition to their limited application to glioblastomas, each of these
measures is difficult to quantify in individual cases because they
are highly spatially variable and representative only of the positive
component (mitosis) of the proliferation rate (ρ) without counting
the negative component resulting from apoptosis or other cell
death mechanisms. Further, none of these measures directly con-
siders the role of invasiveness in the overall growth pattern.

Figure 2. A and B, the ratio of the actual
survival to the RPA-predicted median
survival versus the velocity of radial growth
seen on T1Gd MRI (A) and versus the
net proliferation rate ρ (B). C and D, the
TRI, the ratio of the actual survival to the
model-predicted untreated survival, versus
the velocity of radial growth seen on
T1Gd MRI (C) and versus the net
proliferation rate ρ (D). Open circles,
uncensored patients; filled circles,
censored patients.
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Based on injections of i.v. iododeoxyuridine and BrdUrd into pa-
tients before tumor resection, Hoshino and colleagues (27) reported
a potential doubling time of gliomas ranging from 2 days to 1 month.
Our patient-specific estimates of the net proliferation rate ρ
corresponding to doubling times ranging from 1 to 87 days with a
median of 17 days are thus consistent with these ranges. Further-
more, we have shown a similar agreement between our patient-
specific estimates of D and that estimated from in vitro data (9).

We used proportional hazard analysis of newly diagnosed glio-
blastoma patients considering the prognostic effect of tumor mea-
sures such as MRI-detectable tumor radius, tumor radial
expansion velocity, and the model-defined net rates of dispersal
and proliferation (10, 18–21). We found that, in our patient popu-
lation, model parameters for these rates of net dispersal and pro-
liferation of glioma cells were strong predictors of survival, with
only the RTOG RPA classification (among the standard clinico-
pathologic parameters considered) nearing significance (a margin-
al P value of <0.06) in univariate analysis. Multivariate analysis
reveals that the significance of the biomathematical model biolog-
ical aggressiveness parameters remains even when controlling for
age, RPA classification, as well as the existence of concurrent che-
motherapy during primary radiotherapy. Further study on a larger
patient population is required to enforce this significance and any
role these measures may play in the routine clinical management
of glioblastoma patients.

For this patient population, the net invasiveness, D, only reaches
prognostic significance when considered in combination with ρ.
The ratio ρ/D gives a measure not only of the steepness of the gra-
dient of the invading cells peripheral to the T1Gd edge but also of
the net proliferation rate normalized to the net diffuse invasion,
which has been shown to be associated with increased hypoxic
burden in glioblastomas (38). Thus, tumors with high ρ/D would
be expected to show not only rather distinct borders on histology
but also more necrosis associated with hypoxia due to the crowd-
ing and other microenvironmental constraints inherent to a highly
proliferative tumor with a relatively low invasion. The present anal-
ysis suggests that prognostically significant measures of biological
aggressiveness can be quantified from routinely available pretreat-
ment MR imaging of glioblastomas.

It is difficult to tease out subpopulations of patients with vary-
ing degrees of responsiveness in standard clinical study ap-

proaches. We have presented a method to predict the patient's
course without any treatment and to compare how the predicted
result compares with the actual outcome. Our hypothesis is that
ρ and D are sufficient to create such an UVC, but as we gain more
experience in making such comparisons, we are willing to admit
that there may be other factors that will improve the comparability
of the real patient with the virtual control. At the current state, we
have a tool that we believe represents an advance over the current
techniques.

Following the vein of our early work (1, 2, 15, 39, 40), a number
of model extensions and novel approaches to modeling gliomas
have been explored by us (41) and others (42–45). Most others have
focused on modeling the experimental setting in which, for in-
stance, tumor spheroid data are analyzed (43, 46), but some have
considered realistic patient geometries (42, 44, 47). Most of these
are impractical for direct application to individual patients be-
cause of the need to estimate numerous patient-specific parameter
values from scant data (42, 44), and none have applied their
techniques to any significantly sized patient data sets to yield
patient-specific predictions that can be tested, validated, and used
to improve the care of glioma patients.

Other than our recent report on a small subset of eight of these
patients (20), to our knowledge, this is the first time in which rou-
tine clinical MRIs pretreatment have been translated to prognos-
tically significant net rates of glioblastoma proliferation and
invasion. Such a novel tool for quantifying glioma growth kinetics
has numerous potential applications focusing on the creation of an
UVC for each glioma against which treatment effects in each pa-
tient can be measured (6, 48, 49) and in which novel treatment
approaches can be optimized.

We have developed a novel tool to potentially identify each in-
dividual patient who did or did not respond to treatment (through
the TRI). Because all patients received XRT, what radiotherapist
would like to learn is whether his/her therapy (even with all the
others combined) did or did not work in particular patients who
can now be specifically identified; whether the addition of chemo-
therapy did or did not matter very much; and whether high ρ was
associated with longer survival and low ρ with only average surviv-
al. If the treatment(s) cannot provide a longer survival then the
UVC, then that treatment can be discarded or retained to better
suit the dynamics of the tumor growth. These general finding

Figure 3. A, actual survival time versus
predicted survival time of the UVC showing
the line of identity corresponding to a TRI
of 1.0. B, sensitivity and specificity of
standard clinical parameters and
patient-specific model parameters in
predicting the patients who will respond
to treatments and survive longer than
150% of their baseline (untreated)
model-predicted survival (TRI > 1.5).
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are consistent with our more detailed analysis of an extended
model including a term to quantify the effect of radiation therapy
and patient-specific radiation dose plans (48, 49).

This study highlights the novel role for a biomathematical model
that takes into account both net tumor cell proliferation and net
tumor cell invasion to allow for translation of information provid-
ed by routine serial (pretreatment) MR imaging to overall tumor
growth kinetics or phenotype in vivo. Thus, dynamic insight from
routinely available pretreatment imaging may be useful both in
predicting and in assessing individual patients. Further, these re-
sults suggest that these measures of kinetics are important for the

accurate prediction of disease course independent of the routine
clinical parameters currently relied upon.
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