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Quantifying glioma cell growth and invasion in vitro
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Abstract

A mathematical model has been developed to describe and quantify the growth and invasion of gliomas (the most common
type of primary brain tumors). The model has already been shown to agree well with in vivo imaging studies of gliomas. Here
we demonstrate the model’s agreement with in vitro experimental data. The analysis provided in this article demonstrates that the
model agrees well with published observations of growth and invasion of gliomas cells in culture. These in vitro results support the
model’s utility in describing the behavior of glioma cells in experimental settings but also lends credence to the applications of the
model to the in vivo setting.
c© 2007 Elsevier Ltd. All rights reserved.

Keywords: Brain tumor; Mathematical model; Glioma; Invasion

1. Introduction

Gliomas are aggressive brain tumors with the ability to invade the surrounding normal tissue. Despite significant
medical advances and concerted efforts to treat these tumors, the survival time for patients diagnosed with malignant
gliomas remains a dismal 6–12 months [1]. To better characterize the behavior of gliomas, we have developed
mathematical models for the growth and invasion of these brain tumors [2–4] under a variety of conditions ranging
from in vitro experiments to actual in vivo dynamics. Our hope is that better treatment strategies can be found by
studying virtual tumors via mathematical modeling. Mathematical models have been used extensively in the analysis
of many biological phenomena (reviewed by [5]).

In vitro experiments are often used to analyze various aspects of in vivo behavior of biological systems. Since
relevant in vitro experiments are often easier to perform, it is important to be able to interpret their results in qualitative
and quantitative terms relevant to characterization of in vivo behavior. This modeling approach is used here to consider
two such in vitro experiments [6,7] to better characterize and quantify glioma growth and invasion.

Gliomas originate from the structural cells of the central nervous system known as glial cells. Normal healthy glial
cells have a very low motility rate [8] but malignant glial cells, glioma cells, have been shown to exhibit high motility
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rates [6–17]. In the early 1980’s, in vitro studies by Westermark et al. [18] demonstrated the remarkable motility of
human malignant glioma cells. Using time-lapse video microscopy and other techniques, Chicoine and Silbergeld [6,
8] have recently quantified brain tumor cell motility and invasion capabilities in vivo and in vitro. Their results [6]
suggest an average linear velocity of 12.5 µm/h for human glioma cells in vitro and a minimum linear velocity of
4.8 µm/h in vivo.

In addition to those mentioned here, there has been a number of other experiments to quantify glioma growth and
invasion [15,6,17,7,9,16,12–14,18]. The results of two of those experiments are particularly quantitative and thereby
convenient to translate into the terms expressed in our mathematical model. We analyze those two experiments here.

2. Mathematical model

The basic mathematical model [2–4,19–22] is based on proliferation and migration of glioma cells and can be
described by the word equation:

rate of change of cancerous cell density = diffusion (random motility) of the cancerous cells

+ net proliferation of the cancerous cells

or in mathematical terms as

∂ c̄

∂ t̄
= ∇̄ · (D(x̄)∇̄ c̄) + ρc̄ (1)

where c̄(x̄, t̄) is the tumor cell density at location x̄ = (x̄, ȳ) and time t̄ , D is the tumor cell motility rate (diffusion
coefficient), and ρ represents the net proliferation rate of the tumor cells. We assume an exponential growth pattern for
these types of tumor cells. Although a saturating growth term (e.g. logistic growth) would be strictly more accurate,
we have found that on the time scale of the experiments concerned, the linear proliferative term is sufficient.

The brain consists of two types of tissue, grey matter and white matter. Gliomas migrate more quickly in white
matter then in grey matter (see [2,3] for more details). For this reason, our model encompasses a diffusion coefficient
which is a function of the spatial variable x̄ to differentiate regions of grey and white matter. We take the diffusion
coefficient D to be a scalar; thus, we do not include any anisotropy in the brain tissue.

We use this basic model framework to quantify the experimental in vitro results observed by Chicoine and
Silbergeld [6] and Giese et al. [9].

3. Chicoine and Silbergeld [6]: Radial dish assay experiments

Chicoine and Silbergeld [6] developed a tumor cell motility assay known as the “radial dish assay”. In summary,
2 × 104 cells are plated in a central disc 2 cm in diameter on a petri dish 8 cm in diameter. The cells are poisoned to
prevent mitosis. This poisoning of the cells to hinder mitosis is not thought to alter their motility [6]. Daily microscopy
of the dish gives the redistribution of the cell population. For each day, the distribution of cells is plotted in Fig. 1,
which is extracted from [6].

In this experiment, the cells are not allowed to proliferate (ρ = 0) and there is no presumed heterogeneity in
diffusion (D(x̄) = D). Under these conditions, the dimensional model given in Eq. (1) becomes:

∂ c̄

∂ t̄
= D∇̄

2c̄ (2)

with zero flux boundary conditions at the edge of the petri dish:

∇̄ c̄(r̄ , t̄) · n̄ = 0 for r̄ = R0. (3)

Here, R0 is the radius of the petri dish. In the radial dish assay described by Chicoine et al. [6], R0 = 4 cm. Initially
cells are uniformly distributed in a central circular area of radius R corresponding to the initial condition:

c̄(r̄ , 0) = c0 H(R − r̄) (4)

where r̄ = ‖x̄‖ and H is a Heaviside function taking on the value 1 for r̄ < R and 0 otherwise. In the experiments of
Chicoine and Silbergeld [6], R = 1 cm. Since mitosis is blocked, there is no growth and a total of N = c0π R2 cells
are in the petri dish during the entire experiment.
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Fig. 1. Observations by Chicoine et al. [6] of in vitro cell densities compared with (a) asymptotic approximation (14) and (b) numerical solution of
(3) and (4). The experimental data were extracted from Fig. 5 of Chicoine et al. [6] for mixed glioma cells. The asymptotic approximation shown
in a) is strictly only valid for moderate t and small r (i.e. rλ

2t small). The curves in (a) and (b) correspond to experimental observation times t = 24

(solid), 72 (dashed), 120 (dotted) h denoted by +, ©, ×, respectively. Parameter values: D = 0.002 cm2/h, λ =
1
4 .

3.1. Nondimensionalization

Introducing the nondimensional variables:

x =
x̄
R0

, t =
D

R2
0

t̄, c(x, t) =

c̄

(
x̄
R0

, D
R2

0
t̄

)
c0

, (5)

where N = c0π R2 represents the initial number of tumor cells in the brain at model time t = 0 and x = (x, y), the
model in nondimensional terms becomes

∂c

∂t
= ∇

2c for 0 < r < 1

c(r, 0) = H(λ − r)

∇c · n = 0 at r = 1,

(6)

where λ =
R
R0

. In the case of the radial dish assay experiments, λ =
1 cm
4 cm . Equivalently, the nondimensional model

can be written in radial coordinates as

∂c

∂t
=

∂2c

∂r2 +
1
r

∂c

∂r
+

1

r2

∂2c

∂θ2 for 0 < r < 1

c(r, θ, 0) = H(λ − r)

∂c

∂r
= 0 at r = 1,

(7)

where the tumor cell density c is now a function of radial distance r =

√
x2 + y2 and angle θ as well as time t .

3.1.1. Asymptotic approximation for cell density c(r, θ, t)
Assuming that the petri dish is sufficiently large so that R0 � R, the solution of (3) can be approximated by that

on an infinite domain. This estimate is accurate as long as the cells are not motile enough to introduce significant
boundary effects on the time scale of the experiment.

Solving Eq. (7) with a single delta function source of tumor cells at some location (η, σ ) gives the fundamental
solution

K (r, θ, t; η, σ ) =
1

4π t
exp

(
−

r2
+ η2

− 2rη cos(θ − σ)

4t

)
. (8)
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Since (7) is linear, superposition and the fundamental solution K to determine the solution of (7) with the experimental
Heaviside initial conditions. If the initial area covered by tumor cells is small compared to the area of the entire petri
dish, the distribution c(r, θ, t) can be approximated by the fundamental solution K (r, θ, t). However, in the case of
the experiments of Chicoine and Silbergeld [6], the initial area covered by tumor cells is a significant fraction of the
total area of the petri dish. Therefore, it is important to consider the short time effects of the initial condition (4).

First, consider the situation where the cells are initially distributed on an infinitesimally thin annulus (ring) of
radius r0:

cring(r, θ, 0; r0) =
1

2πr0
δ(r − r0) = G(r, r0). (9)

By superposition, the solution of (3) with this annulus as the initial condition is

cring(r, θ, t; r0) =

∫ 2π

0

∫
∞

0
K (r, θ, t; η, σ )G(r, r0)ηdηdσ

=
1

8π2t

∫ 2π

0
exp

(
−

r2
+ r2

0 − 2rr0 cos(θ − σ)

4t

)
dσ

=
1

8π2t
exp

(
−

r2
+ r2

0

4t

)∫ 2π

0
exp(B cos(θ − σ))dσ, (10)

where B =
rr0
2t . Note that this integral can be expressed as a modified Bessel function of order zero [24]:

cring(r, θ, 0; r0) =
1

4π t
exp

(
−

r2
+ r2

0

4t

)
I0

(rr0

2t

)
. (11)

Asymptotically, for small B,∫ 2π

0
exp(B cos(θ − σ))dσ =

∫ θ

θ−2π

exp(B cos(z))dz

∼ 2π +
π B2

2
+

π B4

32
+ O(B6). (12)

For a ring of cells at a radius r0 from the origin, the distribution of cells at some future time is given approximately
by

cring(r, θ, t; r0) ∼
1

4π t
exp

(
−

r2
+ r2

0

4t

)(
1 +

B2

4
+ O(B4)

)
as B → 0. (13)

When B = 0 (and thus r0 = 0), this is the exact solution of (7) for a point source of cells at r0 = 0.
To translate this result to the case of a disc of cells of radius R, recall that

c(r, θ, 0) = H(λ − r)

=

∫ λ

0

d
dr0

(H(r0 − r)) dr0

=

∫ λ

0

δ(r − r0)

2πr0
2πr0dr0

=

∫ λ

0
cring(r, θ, 0; r0)2πr0dr0.

Combining this with (13), the solution of the full problem (7) with disc initial conditions is
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c(r, θ, t) =

∫ λ

0
cring(r, θ, t; r0)2πr0dr0

∼ exp
(

−
r2

4t

)[(
1 − exp

(
−

λ2

4t

))
+

r2

4t

(
1 − exp

(
−

λ2

4t

)(
1 +

λ2

4t

))]
+ · · · (14)

for ν =
rλ
2t small. In the case of the experiments of Chicoine et al. [6], ν =

r
8t .

We use the approximate solution (14) to obtain an estimate for the diffusion coefficient for the glioma cells in vitro.
Note that the estimate is expected to be most accurate for small r and/or t = O(1) or larger. Fig. 1(a) is a plot of the
experimental measurements of cell densities in the radial dish assay from Chicoine et al. [6] with the dimensional form
of the asymptotic solution (14) for D = 0.002 cm2/h, the best fit of the model to the data, at the different experimental
time points. The numerical solution of (3) and (4) for D = 0.002 cm2/h with the experimental data from Fig. 1(a) is
shown in Fig. 1(b). Comparison of Fig. 1(a) and (b) shows that the asymptotic approximation (14) is fairly accurate
for determining an estimate of the diffusion coefficient parameter D.

3.2. Asymptotic approximation for 〈r〉

Chicoine et al. [6] also calculated the average distance from the origin, 〈r〉, for the glioma cells in the radial dish
assay method. To determine 〈r〉 it is necessary to integrate the asymptotic solution (14) over all r values, but the
asymptotic solution is strictly only valid for rλ

2t small; this asymptotic parameter is not small for arbitrarily large r .
Therefore, it is necessary to reconsider the approximation of 〈r〉.

Recall that if c(r, θ, t) is the distribution of the cells at time t , then the mean radial distance of cells from the origin
〈r〉 is given by

〈r〉 =

∫ 2π

0

∫
∞

0 rc(r, θ, t)rdrdθ∫ 2π

0

∫
∞

0 c(r, θ, t)rdrdθ
=

∫ 2π

0

∫
∞

0
c(r, θ, t)r2drdθ (15)

where

c(r, θ, t) =

∫ 2π

0

∫
∞

0
K (r, θ, t; η, σ )H(λ − η)ηdηdσ

=

∫ 2π

0

∫ λ

0
K (r, θ, t; η, σ )ηdηdσ (16)

with K given by (8), then

〈r〉 =

∫ 2π

0

∫ 2π

0

[∫ λ

0
η exp

(
−

η2

4t

)[∫
∞

0
r2 exp

(
−

r2
− 2rη cos(θ − σ)

4t

)
dr

]
dη

]
dθdσ

=
1

4
√

π A

∫ 2π

0

∫ 2π

0

∫ λ

0
η2(1 + 2A cos2(θ − σ)η2)

× (1 + erf(η
√

A cos(θ − σ))) exp(−Aη2 sin2(θ − σ))dηdσdθ,

where A =
1
4t . With the change of coordinates u = θ − σ and v =

1
2 (θ + σ), then

〈r〉 =
2

4λ2
√

π3 A

∫ 2π

0

∫ λ

0
η(2π − u)(1 + 2Aη2 cos2 u)(1 + erf(η

√
A cos u)) exp(−Aη2 sin2 u)dηdu.

For small t (large A), we use a Laplace’s method argument to approximate this expression:

〈r〉 ∼
3 + 2Aλ2

6Aλ
(1 + erf(

√
Aλ)) −

5

6λ2
√

A3π
+

5 + 2Aλ2

6
√

π Aλ2
exp(−Aλ2)

=
6t + λ2

3λ

[
1 + erf

(
λ

2
√

t

)]
−

20

3λ2

√
t3

π
+

10t + λ2

3
√

πλ2
exp

(
−

λ2

4t

)
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∼
2λ

3
+

4t

λ
+ · · · as A =

1
4t

→ ∞. (17)

As t → 0 (A → ∞), 〈r〉 approaches 2λ
3 which corresponds to the exact mean radial distance associated with the

(nondimensional) initial distribution of cells (4).
Alternatively, for large t (small A), the mean displacement can be expressed as

〈r〉 =
√

π t

(
1 +

λ2

16t
−

λ4

768t2 + · · ·

)
. (18)

As expected, for t large, the mean radius converges to the case of a point source of cells at the origin: 〈r〉 =
√

π t
(in dimensional form, 〈r̄〉 =

√
π Dt̄). That is, after an extended period of time, the diffusive forces will have spread

the population out sufficiently so that the original distribution cannot be identified. However, for large time as well,
the effects of the boundaries of the petri dish become important. In particular, since the cells in the petri dish are
not allowed to grow during the experiments of Chicoine et al. [6], the cell density approaches a uniform steady state
c → λ2 (in dimensional terms, c̄ → c0λ

2) as t → ∞. Thus, a more accurate asymptotic estimate for the large time
behavior would use this steady state to compute the mean displacement:

〈r〉 =

∫ 2π

0

∫
∞

0
c(r, θ, t)r2drdθ →

∫ 2π

0

∫ 1

0
λ2r2drdθ =

2π

3
λ2 as t → ∞. (19)

In Fig. 2, the small t and large t asymptotic approximations (17) and (18), the large time limit (19), and the
numerical calculation of 〈r〉 for a given diffusion coefficient D = 0.002 cm2/h are shown. For small t , the cells in
the centrally located tumor cells are moving around within the initial core and have not yet meandered far from the
edge of the original distribution. Therefore, the mean radius is slowly increasing linearly in time (17). Over time the
cell spreading smears out the cell population and the original state of the cell distribution cannot be identified. The
population approaches the behavior observed due to a point source of cells at the center of the petri dish (18). However,
on comparison with the calculation of 〈r〉 from the numerical solution of (3) and (4), the asymptotic expansion for large
t (18) becomes less valid due to the effects of the boundary (not incorporated into the approximation of 〈r〉). Those
boundary effects are incorporated into the large time limit of 〈r〉 given in (19) and plotted in Fig. 2. For the range of
diffusion coefficients that are biologically reasonable and that we therefore expect to observe (i.e. D ≈ 0.002 cm2/h),
the asymptotic value A =

1
4t is large on the time scale of the experiments of Chicoine et al. [6]. That is, in dimensional

terms, A =
R2

0
4D (t̄)−1, where t̄ lies between 0 and 168 h. For D = 0.002 cm2/h, A lies between 11 and ∞ during these

experiments. Fig. 2(b) demonstrates the small t (large A) asymptotic expansion is clearly more accurate than the large
t (small A) expansion for the time scale of the experiments of Chicoine et al. [6].

Chicoine et al. [6] actually calculated a “mean radius” that is slightly different from what we calculated and
described above for 〈r〉. Their calculation neglected the contribution of the cells within the initial ring of radius
R. This corresponds to simply replacing the integral

∫
∞

0 dr in the calculation of 〈r〉 (15) with the integral
∫

∞

λ
dr . We

denote this new “mean radius” by 〈r∗
〉. It satisfies:

〈r∗
〉 =

∫ 2π

0

∫
∞

λ
(r − λ)c(r, θ, t)rdrdθ∫ 2π

0

∫
∞

λ
c(r, θ, t)rdrdθ

=
1

1 − λ2

∫ 2π

0

∫
∞

λ

(r − λ)c(r, θ, t)rdrdθ, (20)

where c(r, θ, t) is as previously defined in Eq. (16). Approximation methods similar to those above for 〈r〉 yield the
following asymptotic approximation:

〈r∗
〉 ∼

2π t2

1 − λ2 +
40

3(1 − λ2)

√
π t3 + · · · for small t (large A). (21)

In the Chicoine et al. [6] experiments, R = 1 cm and therefore λ =
1
4 .

Fig. 3 shows the mean radius 〈r∗
〉 computed from the experimental observations of Chicoine et al. [6] with

the asymptotic expression (21) which is valid only for small t . There are three progressively malignant types of
gliomas listed: anaplastic astrocytoma, mixed glioma and glioblastoma multiforme. Fig. 3 suggests estimates of
0.0016 cm2/h, 0.002 cm2/h, and 0.003 cm2/h for the diffusion coefficients for anaplastic astrocytoma, mixed glioma,
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Fig. 2. (a) Numerical solution and asymptotic approximations of 〈r〉 for small and large t ((17) and (18)) as well as the large t limit (19)
(b) Close up of figure (a) to show the portion of the time scale on which the experiments by Chicoine et al. [6] were observed. Parameter values:
D = 0.002 cm2/h, λ =

1
4 .

and glioblastoma multiforme cells, respectively. Therefore, with increasing malignancy, cell motility appears to
increase. In fact, this result suggests that there is approximately a two-fold difference between the motility of mid-
grade anaplastic astrocytoma cells and high-grade glioblastoma cells.

In Fig. 3 the asymptotic expansion (17) overestimates the mean radius for glioblastoma cells for t̄ > 96 h [6]. This
is expected because Chicoine et al. [6] observed that the glioblastoma cells move so quickly that they are capable of
reaching the edge of the dish in 96 h [6], so that boundary effects become important. The anaplastic astrocytoma and
mixed glioma cells are not capable of reaching the petri dish edge until later times.

As in the calculations of 〈r〉, there is a steady state limit that the tumor cell population in the petri dish is
approaching (c → λ2) for large time. We can calculate the effect this steady state has on the limiting value of 〈r∗

〉:

〈r∗
〉 →

∫ 2π

0

∫ 1
λ
(r − λ)λ2rdrdθ∫ 2π

0

∫ 1
λ

λ2rdrdθ
=

2 − 3λ + λ3

3(1 − λ2)
(22)

as t → ∞. This limiting value of 〈r∗
〉 is included in Fig. 3 as a dotted line. It defines the overestimation of 〈r∗

〉 by
the asymptotic approximation (17) for glioblastoma multiforme cells in Fig. 3(c).
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Fig. 3. Asymptotic approximation of mean radius 〈r∗
〉 (21) versus time for a) anaplastic astrocytoma (D = 0.0016 cm2/h), (b) mixed glioma

(D = 0.002 cm2/h) and (c) glioblastoma multiforme (D = 0.003 cm2/h) cells (from Chicoine et al. [6]) where estimates of the diffusion
coefficients were obtained by curve fitting. The uniform steady state solution defines the long time limit (dotted line) of 〈r∗

〉 (22). The glioblastoma
cells are observed to reach the edge of the petri dish by 96 h thus defining the overestimation of the asymptotic result for large t values in (c).

Chicoine et al. [23] used a modification of this radial dish assay to assess the chemo-attractant/repellent effects
of certain cytokines on human glioma cell locomotion. An extension of the present modeling approach incorporating
these experiments is in preparation.

4. Giese et al. [9]: Myelin motility experiments

Giese et al. [9] have characterized the increased motility of glioma cells in white matter by analyzing the motility of
glioma cells on myelin (a key component of white matter) under experimental conditions. The experiments of Giese
et al. [9] demonstrating that the motility of glioma cells is higher in white matter than that in the grey matter were
similar to those of Chicoine et al. [6] but on a shorter time scale (40–100 h). The main difference between the two sets
of experiments is that Giese et al. [9] allowed the cells to proliferate during the experiment. Giese et al. [9] tabulated
the increase in radius of the visible front of tumor cells. Since the initially plated cells covered a smaller region than
in the experiments of Chicoine et al. [6], the experiment should be modeled by Eq. (1) within the petri dish r̄ ≤ R0,
where R0 is the radius of the dish in which the cells are allowed to migrate and r̄2

= x̄2
+ ȳ2. This equation should

be solved subject to zero flux boundary conditions

∇̄ c̄(r̄ , t̄) · n = 0 for r̄ = R0 (23)

where n is the outward pointing normal at the edge of dish. Initially, there is a point source of N cells at the origin:

c̄(r̄ , 0) = Nδ(r̄). (24)
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Fig. 4. Fit of model defined linear relationship between detectable radius r∗ and time with experimental observations of Giese et al. [9] for three
different glioblastoma cell lines: (a) G-112, b) G-140, (c) G-168 on the control substrate (ECM — extracellular matrix) (o) and white matter myelin
(+). Slopes of each line define the velocity of the expanding tumor cell population and are shown in Table 1.

For sufficiently large R0,

c̄(r̄ , t̄) ∼
N

4π Dt̄
exp

(
−

r̄2

4Dt̄

)
. (25)

Giese et al. [9] determined the range of expansion of the population over time on myelin as compared to a control
on ECM. That is, given some threshold of detection c̄∗, the radius of the detectable tumor cell region was recorded as
a function of time. The detectable radius r̄∗ of the tumor cell population satisfies

r̄∗

t̄
∼ 2

√
Dρ (26)

for large t̄ . In other words, the velocity of the advancing detectable tumor cell region is approximately 2
√

Dρ. Fig. 4
shows a linear least squares fit of the experimental observations of Giese et al. [9] of the detectable radius versus time
for three glioblastoma cell lines (G-112, G-140, G-168) on myelin or ECM. The slope of each line is the velocity
and is taken to be equal to 2

√
Dρ. From an estimate of the growth rate ρ a diffusion coefficient D can be deduced

from these linear-least-squares fits to the data. Table 1 gives the slopes of the linear fits shown in Fig. 4. Assuming
that ρ is fixed whether the cells are migrating on the control extracellular matrix material (ECM) or on the myelin
allows use of the slopes in Table 1 to deduce a relationship between the diffusion coefficients on ECM and myelin,
as follows: Associate DECM and vECM to the diffusion coefficient and linear velocity of cells on ECM, respectively.
Similarly, associate Dm and vm to the diffusion coefficient and linear velocity of cells on myelin, respectively. The
linear velocities satisfy

vECM = 2
√

ρDECM and vm = 2
√

ρDm . (27)

Now the ratio of the diffusion coefficient on myelin to that on ECM is given by

Dm

DECM
=

(
vm

vECM

)2

. (28)

From the velocity values defined in Table 1 allow the deduction that the diffusion coefficient on myelin is 2– 3- times
that on ECM.

As with all experimental results, it is unclear whether the behavior observed in the petri dish is analogous to that in
vivo. To deal with this, a range of experimental conditions is often considered. Table 2 tabulates the results of another
series of experiments by Giese et al. [11]. Each row of Table 2 corresponds to slightly different experimental conditions
as defined by the amount of the nutrient fetal calf serum supplied to the cells. With increasing concentrations of serum
(Experiments 1 → 4), the growth rate of the tumor cells increases but the motility reaches a maximum and then
decreases. Fisher’s approximation allows the deduction of the diffusion coefficients (DECM) for the glioblastoma cells
in these four experimental conditions, as shown in Table 2. The diffusion coefficient also increases to a maximum and
decreases with excess serum.
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Table 1
Velocities v of detectable tumor radius as defined by the slopes of the linear-least-squares fits to the results of Giese et al. [9] shown in Fig. 4

Cell line Velocity on myelin (cm/h) Velocity on ECM (cm/h) Ratio of diffusion coefficients in myelin and ECM
vm vECM Dm/DECM

G-112 .0026 .0015 3.00
G-140 .0019 .0013 2.14
G-168 .0035 .0025 1.96

Eq. (28) suggests there is a 2–3-fold difference between the diffusion coefficients on ECM and myelin under their experimental conditions.

Table 2
Experimental observations of Giese et al. [11] of the velocity of detectable tumor radius (vECM) in ECM and the growth rate (ρ)

Experiment number Velocity on ECM Growth rate Diffusion coefficient
vECM (cm/h) ρ (1/day) DECM (cm2/h)

1 .0006 .075 .00003
2 .0012 .1 .00009
3 .00155 .2 .00007
4 .00115 .575 .00001

From vECM and ρ, the diffusion coefficient is deduced using the Fisher approximation (deducible from the model). Each row corresponds to
different experimental conditions defined by the amount of fetal calf serum supplied to the cells.

5. Discussion

Gliomas are complicated to study and predict because their apparent growth as a mass consists of both proliferative
expansion as well as motility of individual cells. The benefit of mechanistic modeling, like that presented in this
manuscript, of in vitro brain tumor growth and invasion is that it provides a common language for the description
of these observations. Since essentially every researcher has a different means of quantifying invasion versus
proliferation, developing deterministic models like the one described here can assist researchers in the task of teasing
out the contribution of both motility and proliferation in the overall dynamics of the tumor.

The present mathematical model for brain tumor cell growth and invasion in vivo and in vitro is based on net
proliferation and cellular motility as the key elements of glioma behavior. The mathematical results compare well
with the behavior observed experimentally by Chicoine et al. [6] and Giese et al. [9] as shown by the estimates of the
parameters describing the two key components of glioma behavior: proliferation and invasion.

The strong agreement between experimental observations and the model predicted distribution suggests that the
model sufficiently describes the key dynamics of gliomas in vitro. These results provide a foundation for using this
model or a similar one for more complicated scenarios in vivo, as in a virtual three dimensional human brain matrix
of grey and white matter [2,3]. This suggests that although it is a more complicated process to simulate tumor growth
in virtual patients, the basic model mechanism may be the same for both in vivo and the simpler in vitro cases. In
this article we have demonstrated that two different sets of experiments still retain the dynamics associated with our
mathematical model components: proliferation and diffusive random motility.

The results of the comparison of our basic model results with in vivo studies has established a foundation for the
development of our model for in vivo tumor growth and invasion. Although in vivo conditions are obviously different
from in vitro, these experiments and the subsequent comparison with our model led us to a better understanding of
glioma cellular behavior since it provides a means for quantification of experimental observations.
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