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Abstract Gliomas are highly invasive primary brain tumors, accounting for nearly
50% of all brain tumors (Alvord and Shaw in The pathology of the aging human
nervous system. Lea & Febiger, Philadelphia, pp 210–281, 1991). Their aggressive
growth leads to short life expectancies, as well as a fairly algorithmic approach to
treatment: diagnostic magnetic resonance image (MRI) followed by biopsy or surgical
resection with accompanying second MRI, external beam radiation therapy concurrent
with and followed by chemotherapy, with MRIs conducted at various times during
treatment as prescribed by the physician. Swanson et al. (Harpold et al. in J Neuropathol
Exp Neurol 66:1–9, 2007) have shown that the defining and essential characteristics of
gliomas in terms of net rates of proliferation (ρ) and invasion (D) can be determined
from serial MRIs of individual patients. We present an extension to Swanson’s reaction-
diffusion model to include the effects of radiation therapy using the classic linear-
quadratic radiobiological model (Hall in Radiobiology for the radiologist. Lippincott,
Philadelphia, pp 478–480, 1994) for radiation efficacy, along with an investigation
of response to various therapy schedules and dose distributions on a virtual tumor
(Swanson et al. in AACR annual meeting, Los Angeles, 2007).
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1 Introduction

Gliomas are highly invasive brain tumors that spread diffusely through the brain,
producing life expectancies from 6 to 12 months [1,5] for the most aggressive grade
of gliomas known as glioblastoma multiforme (GBM). In practice, an algorithmic
approach to glioma treatment includes a diagnostic magnetic resonance image (MRI)
[6] followed by biopsy or surgical resection of varying extent and accompanying
second MRI, external beam radiation therapy (XRT) concurrent with and followed by
chemotherapy, with MRIs conducted at various times during treatment as prescribed
by the physician.

Radiation therapy is used as a treatment for gliomas because of the precision with
which it targets the tumor region, and its ability to increase survival as much as two
fold [7,8]. Assessing response to therapy in gliomas has historically focused on visible
changes in gross tumor volume (GTV) as measured on MRI. Using the classic linear-
quadratic model [3] for radiation efficacy, we extend Swanson’s existing glioma model
to include delivery and effect of radiation therapy. The advantage of a mathematical
model in this case lies in the ability to observe tumor response at any point during
therapy, and to virtually alter the treatment schedule and dose delivery, options not
otherwise available in vivo.

We present Swanson’s reaction-diffusion model [2,9–11] which describes the dif-
fusion and proliferation of tumor cells in addition to the effects of precisely delivered
radiation therapy. Our model, although deterministic, is derived from stochastic first
principles [32]. The diffuse nature of cell motility has an implicit basis in stochastics,
since we can regard the random motion and migration of cells as Brownian motion,
which gives rise to the diffusion equation [12]. Additionally, radiation therapy is an
inherently stochastic process since its essential mechanisms are on the atomic level:
particle collision, cell death, injury and random repair can all be seen as stochastic
processes, and are essential to the derivation of the linear-quadratic radiobiological
model, [3,13–17] and therefore to the quantification of radiation therapy efficacy.
Equally important is the deterministic modeling of the inherently stochastic spatial
distribution of administered radiation dose in the tumor region.

Using in vivo radiation dose distributions as reference, we investigate the spatio-
temporal delivery of radiation dose, treatment response, sensitivity and recovery time
for various dose distributions and treatment fractionation schemes on a virtual
tumor.

2 Model

2.1 Swanson’s glioma model

Let c = c(x, t) represent the concentration of tumor cells per mm3 at a location x at
time t where the domain B (brain) is closed and bounded. What we will call Swanson’s
fundamental model is a reaction-diffusion partial differential equation which describes
both the net diffusion and proliferation of tumor cells as follows:
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rate of change
of glioma cell
concentration

︷︸︸︷

∂c

∂t
=

net dispersal
of glioma cells
︷ ︸︸ ︷

∇ · (D(x)∇c) +

net proliferation
of glioma cells

︷︸︸︷

ρc

x ∈ B, t ≥ 0, c(x, 0) = c0, n · ∇c = 0 on ∂B (1)

where D is the spatially resolved diffusion coefficient [18,19] with units mm2/year, ρ
is the net rate of proliferation per year, c0 is the initial distribution of tumor cells, and
a zero flux boundary condition n · ∇c = 0 which prevents cells from leaving the brain
domain, B, at its boundary ∂B. Although Swanson’s model allows the diffusion coef-
ficient to be a tensor to account for the complex geometry and preferential directions
for cell migration in the brain [2], we consider here a one-dimensional, spherically
symmetric and isotropic tissue environment where the diffusion is held constant at D.

An essential characteristic of this model is the formation of a tumor cell wave-
front [20] which, in 3 dimensional spherical symmetry, asymptotically approaches a
constant velocity, v = √

2Dρ , Fisher’s approximation [12]. Although c could represent
any tumor population, this simple reaction-diffusion equation is an appropriate model
for gliomas in particular for several reasons:

1. Unlike tumors in other regions of the body, the highly diffuse nature and recurrence
patterns [21] of gliomas agrees with essential properties of the model. Specifically,
in as few as 7 days after tumor induction in a rat brain, glioma cells can be identified
throughout the central nervous system [18], analogous to the instantaneous non-
zero solution of the diffusion equation on any finite domain [22]. Additionally,
recurrence of glioma growth at the boundary of resection mirrors the perpetual
proliferation and dispersal of any non-zero tumor cell concentration at any time
point [23].

2. In vivo evidence suggests the observably advancing tumor front travels radially at
approximately a constant rate [24–27], and, barring treatment or physical barriers
of brain anatomy, grows with spherical symmetry, aligning with Fisher’s approxi-
mation [2]. Moreover, the constant velocity of untreated growth suggests that D
and ρ are characteristics intrinsic to the tumor [6,28,29].

3. The parameters D and ρ can be calculated for an individual tumor from as few as
two pre-treatment MRI’s [2], eliminating the estimation and exploration of large
parameter domains, and providing an immediately applicable metric for glioma
growth and invasion for any given tumor in vivo.

2.2 Parameter ranges and estimation

Parameters D and ρ from Swanson’s fundamental glioma model can be computed from
as few as two pre-treatment MRI observations [2,6]. Current data from 29 tumors show
a range of 6–324 mm2/year for D and 1–32 /year for ρ [2].

Despite the clinical relevance of Swanson’s fundamental model, it is only sufficient
in describing untreated glioma growth. An extension of the model to include the effects
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of resection and chemotherapy has been investigated [9–11,30]. However, in light of
the pervasiveness of radiation therapy as a treatment to these tumors, an extension of
the model to include the effects of such therapy is a natural and logical progression.

2.3 Extension to include radiation therapy

We introduce an extension to Swanson’s model of the form

rate of change
of glioma cell
concentration

︷︸︸︷

∂c

∂t
=

net dispersal
of glioma cells
︷ ︸︸ ︷

∇ · (D(x)∇c) +

net proliferation
of glioma cells

︷︸︸︷

ρc −

loss due
to therapy
︷ ︸︸ ︷

R(x, t)c , (2)

where R(x, t) represents the effect of XRT at location x and time t [4]. We utilize the
widely known and accepted linear-quadratic radiobiological model [3,31,32] for this
extension, the motivation for which lies in our ability to communicate our modeling
in a language familiar to our colleagues and collaborators in the medical community,
as well as our belief in the relevance, versatility and robustness of the model.

Although XRT may be delivered in a variety of ways, the fundamental mechanism
for cell death is linear energy transfer, or LET [31,32]. Highly energized particles
are emitted from a radioactive source that ionizes the atoms which make up the DNA,
causing lesions which can be thought of as injuries to the cell’s DNA. Cellular damage
is manifested as double strand breaks (DSB) to the DNA structure. The DNA injury
makes the cell unable to reproduce itself during the next mitotic phase since transcrip-
tion will be impossible.

Since LET relies on a collision between an energized radiation particle and the
DNA strand of a cell, there is an inherent stochasticity in measuring the effect of
radiation, which we presume to be cell death. This manifests itself as a Poisson statis-
tic [14] and provides the basis for the classic linear-quadratic (L-Q) model for radiation
efficacy. The L-Q model can be derived in several ways, potentially utilizing dispa-
rate assumptions about cellular response, repopulation of cells and duration of dose
delivery [13,33]. Although all have been shown to be equivalent, we prefer the deri-
vation presented by Sachs et al [14], who showed that for a clonogenic cell population
N the surviving fraction N/N0 can be expressed as a sum of linear and quadratic
contributions to the log of the surviving fraction as

ln

(

N

N0

)

= −α D̃ − β D̃2 (3)

where D̃ is the total dose administered, N0 and N are cell populations before and after
therapy, respectively, and α and β are parameters to be measured. This allows us to
express the surviving fraction S of cells post radiotherapy as

S = exp
(

−α D̃ − β D̃2
)

. (4)
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In addition, it can be shown that cell population susceptibility based on increased
radio-sensitivity in the G2 and mitosis phases of the cell cycle can be incorporated
into the model derivation without formal change. Therefore our implementation of
the L-Q model need not explicitly account for cell cycle dynamics, although that is a
possible avenue for further investigation.

The L-Q model by definition relates the physical dose in units of Gray (Gy) which
is the absorption of one joule (J) of radiation energy by one kilogram (kg) of matter,
1Gy = J

kg to an effective dose (unitless) by the following relationship:

effective dose = α D̃ + β D̃2. (5)

In order to avoid toxic effects to normal tissue, the total dose is given in small
fractions: where n is the number of fractions, and d is the fractionated dose which is
implicitly spatially and temporally defined, so d = d(x, t) throughout. In practice,
the ratio α/β is held constant at 10 Gy [3,14,16,34–37], and motivates the definition
of the following quantities, derived from the effective dose(5) :

BED = nd

(

1 + d

α/β

)

, relative effectiveness =
(

1 + d

α/β

)

(6)

where BED stands for the biologically effective dose, and is a convenient measure
of efficacy: total dose times its relative effectiveness [3]. The definition of BED also
leads to the following convenient expression of survival probability,

S(α, d(x, t)) = e−αB E D . (7)

With α/β fixed, and n and d determined by the treatment schedule, the strong
dependence on the single parameter α (Gy−1) is made clear. Large α implies high
susceptibility to therapy, whereas small α implies low susceptibility: we therefore
regard α as our radiation sensitivity parameter.

It should be stated that several of the well known variations on the L-Q model
[13,16,38] including cellular repopulation or loss rate and effective doubling time,
are included in the net growth rate ρ in Swanson’s model (1).

Now that we have established the survival probability, S, as a function of the radia-
tion sensitivity parameter α and the dose distribution d = d(x, t) per fraction, (1− S)

represents the probability of cell death, and we can incorporate the effects of any
radiation treatment protocol into Swanson’s fundamental model as follows:

∂c

∂t
= ∇ · (D(x)∇c) + ρc − R (α, d(x, t), t) c (8)

where

R(α, d(x, t)) =
{

0, for t /∈ therapy

1 − S(α, d(x, t)), for t ∈ therapy.
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with space and time domains, as well as boundary and initial conditions as stated
in (1).

3 Methods

3.1 Model assumptions

For the purposes of initial exploration of the extended model, the following assump-
tions are made: in addition to the central assumption of isotropic spherical symmetry
D(x) = D, our model assumes no effect of central or peripheral necrosis (cell death
not already included in the net proliferation rate ρ) on available space in the domain
for growing tumor cells, or the direct induction or deceleration of cell diffusion or
proliferation due to XRT. All effects of radiation on tumor cell concentration are ins-
tantaneous and deterministic, all cells are equally susceptible and likely to be killed
by radiation as prescribed by the cell kill (1 − S) (7), and no delayed or otherwise
toxic effects of radiation are considered.

3.2 Non-dimensionalization and numerical algorithm

The model (8) is non-dimensionalized in one-dimension for computational conve-
nience in the following way: introduce the non-dimensional quantities x = x/L ,
t = ρt , c = (

cL3
)

/c0 where L is the dimensional length of the computational domain,
and c0 represents the initial number of tumor cells, which has no net effect on the sca-
ling and is therefore arbitrary. This yields the following

ct = D∗∇2c − R∗ (

α, d( x, t ), t
)

c

where, R∗ (

α, d(x, t), t
) ≡

{

1, for t /∈ therapy

ζ(α, d( x, t ), t ), for t ∈ therapy.
(9)

D∗ = D/(ρL2) and ζ(α, d(x, t), t) = (1 − S(α, d(x, t)))/ρ with scaled domains,
initial and boundary conditions as previously stated and as in (1). All dimensional
units are in the context of mm and years.

Model solutions are obtained using the one-dimensional discretization method of
Skeel and Berzins [39] implemented in MATLAB. The algorithm utilizes a variation
on a finite-element method which is second order accurate in both space and time,
resulting in spatial resolution comparable with the most highly resolved MRIs, at 1
mm3. Clearly then, our measurement of tumor growth and response to therapy depend
on the resolution of our spatial mesh, which need be no larger than what is measurable
on MRI, therefore we take L = 200 mm, �x = 10−3 mm, and �t = 1 day. Moreover,
we take n = 1 in the formulation of the BED in order to consider the dose delivery
and effect as a single, instantaneous event.
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Fig. 1 T1Gd and T2-weighted MRI images of a patient diagnosed with glioblastoma multiforme (GBM)

3.3 Initial condition

The extended, non-dimensional model (9) assumes an initial tumor concentration
normally distributed as follows:

c ( x, 0) = L3e−100x2
(10)

where L is the length of the dimensional computational domain. The virtual tumor
is allowed to grow until it reaches a specific size, corresponding to a radius between
10–20 mm, at which point radiation therapy is simulated. After the simulated therapy
is completed, the tumor continues to grow for 100 additional days, at which point the
simulation is completed.

3.4 MRI thresholds of detection

Clinical observation of glioma growth and progression relies primarily on MRI [6].
Swanson’s model and analysis currently utilize gadolinium enhanced T1-weighted
(T1Gd) and T2-weighted MRI imaging modalities. T1Gd images abnormally leaky
vasculature within the tumor, outlining the bulk of the lesion. T2-weighted MRI cap-
tures edema as well as isolated tumor cells at a much lower threshold. Roughly spea-
king, the T1Gd MRI reveals the tumor mass, and the T2 the tumor’s spread and
associated swelling (edema), or clinically observable boundary (Fig. 1). Although the
T1Gd abnormality outlines the neovasculature, and is thought to represent the bulk
tumor mass, it is also potentially a poor indicator of response, as XRT damage may not
cause rapid shrinkage of the abnormality. All clinical imaging modalities are limited
by thresholds of detection, though it is well known that glioma cells infiltrate throu-
ghout the central nervous system well beyond any imaging abnormality [8]. Swanson’s
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model is able to act as an idealized imaging technique, allowing visualization of glioma
cell concentration beyond what is visible on MRI.

3.5 Radiation dose delivery and distribution

Although our model allows for any imaginable treatment schedule or dose distribution,
we define the standard treatment to be the current University of Washington Medical
Center radiation protocol: 7 weeks of treatment, using a 5 days on, 2 days off schedule
(to allow for weekends) delivering 1.8 Gy to the T2 enhancing region plus a 25 mm
margin for 28 days, followed by 1.8 Gy to the T1Gd enhancing tumor region plus a
20 mm margin for the remaining 6 days, yielding 61.2 Gy total max dose to the tumor
bed. The region and duration of the final 6 days is considered the boost time (BT) and
boost region (BR), respectively. For simplicity, all treatment simulations are assumed
to begin on a Monday so that 5 consecutive days of therapy can be applied before
the 2 day rest period is implemented. The addition of the BT and BR make our dose
distribution a function of time as well as space, so that d = d(x, t).

Days in therapy (DIT) is defined to be the duration of the therapy regimen, whereas
days of treatment (DOT) is defined to be the number of days in which XRT was actually
administered. For example, DIT = 35 days implies DOT = 25. In the case where
DIT is not divisible by 7, the DOT is rounded to the next integer [40]. We consider
DIT as individual, independent and instantaneous events each occurring on the day
of treatment. In reality, treatment lasts several minutes each day. This assumption is
consistent with the many derivations of the L-Q model, and poses no unnecessary or
extraordinary abstraction from the mechanisms modeled.

In clinical practice, radiation dose is designed and delivered in a full 3-dimensional
environment. Using 2-dimensional cross-sections of actual 3-dimensional dose distrib-
ution maps, with additional guidance from radiation oncologist Jason Rockhill, one-
dimensional dose distributions were created for use in simulations using nine fixed
reference points (Fig. 2) as follows: the target dose is fixed at the tumor center, with
five points of random variation not to exceed 5% of the target dose between the
origin and enhancement boundary, with 5% of the maximum dose fixed 15 mm beyond
the enhancement boundary with margin, which determines the gradient of the dose
boundary. To maintain a realistic, non-zero dose throughout the brain, we fix the dose
to be zero only at the far boundary of the one dimensional domain. These points are
then interpolated with a spline interpolation algorithm, guaranteeing the smoothness
and differentiability of the dose function d(x, t).

3.6 Radiation dose fractionation

Clinically, radiation dose is delivered with the intent of maximizing (tumor) effect
while at the same time minimizing (normal tissue) toxicity. This often leads to daily
dosages of between 1 and 2.5 Gy. Hyper- and hypo-fractionation of the standard dose
involve decreasing the incremental dose amount with an increase in frequency or vice
versa, respectively [41,42]. Although thresholds for radiation toxicity and radiation-
induced necrosis exist in clinical practice [43], we investigate the effects of accelerated
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Fig. 2 a Two-dimensional cross
section of actual dose
distribution for a patient with a
GBM. Enhancement margin is
nonuniform in order to avoid
high doses of radiation to the
brain stem. b One-dimensional
dose distribution created with a
spline interpolation of nine
reference points. c Cumulative
dose distribution showing
enhancement region plus margin
for initial and boost phases of
dose delivery for the standard
treatment scheme
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or decelerated treatment on a virtual tumor, ignoring the thresholds of toxicity. This
assumption is not grossly negligent, as current treatment practices such as gamma-
knife [44] deliver a whole course (>50 Gy) of radiation treatment in a single dose with
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the conscious trade off of cell kill for tangential toxicity-albeit the dose distribution
for gamma-knife is tailored much more closely to the enhancing region with a 50%
decrease in dose magnitude over 2 mm typically attained, unlike the above, for which
a 50% decrease in dose magnitude spans as much as 10 mm.

4 Results

We simulate the growth and treatment of a virtual tumor under a variety of treatment
schedules and dose distributions as well as investigate the differences in response
using different metrics. We characterize the virtual tumor with parameter values as
follows: D = 1.43 cm2/year, ρ = 16.25 /year, which serve as representative means
of published ranges [2].

4.1 Estimating radiation sensitivity

The National Cancer Institute determines tumor response to treatment using the Res-
ponse Evaluation Criteria in Solid Tumors (RECIST) [45] as follows: disappearance
of all target lesions, complete response (CR), 30% decrease in pre-treatment diame-
ter, partial response (PR), 20% increase in pre-treatment diameter progressive disease
(PD) and small changes that do not meet the above criteria stable disease (SD). The
symmetry of our simulations allow us to consider the RECIST criteria in the context
of radial progression of the tumor rather than diameter. Due to their significant resis-
tance to radiotherapy and aggressive growth, glioma radiation response is generally
classified as PD to PR, with response measured on T1Gd; accordingly, we define the
typical response window (TRW) as 30% decrease to 20% increase in pre-treatment
radius immediately after therapy. Given this rather coarse but nevertheless contem-
porary and pragmatic view of treatment response, we can establish a realistic range
for our radiation sensitivity parameter, α, for the virtual tumor. Using an iterative
approach with a fixed incremental change in α, we simulated a standard course
of XRT on the virtual tumor for a large set of α values. The TRW restricts the
range of reasonable radiation sensitivities to 0.025 Gy−1 ≤ α ≤ 0.033 Gy−1,
well within published ranges calculated for gliomas [37,46] (Fig. 3). Although the
figure may suggest a linear relationship between α and T1Gd radius at the end
of therapy, additional simulations reveal a highly non-linear pattern for changes in
α, D or ρ.

The following simulations were performed with α = 0.0305 Gy−1, resulting in ∼
25% decrease in pre-treatment radius for the standard XRT schedule, an optimistic
and above average response to treatment.

4.2 Treatment schedule and fractionation

Several dose fractionation schemes were simulated based on the number of fractions
per day (FPD) and total DOT in intervals of 1–4 FPD and 1, 5, 10, 15, 40 DOT
(Table 1) and 1, 5, 15–45 DOT (Fig. 4), respectively [41,42,47,48]. The maximum
regional total dose was held constant at 61.2 Gy, with per fraction dose distributions
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Fig. 3 a Simulated tumor growth and response prior to, during and after XRT as measured on T1Gd. Solid
black line shows no visible tumor for ∼30 days. Time t = 0 days corresponds to the beginning of standard
XRT simulated with range of sensitivity values 0.025 Gy−1 ≤ α ≤ 0.036 Gy−1. Dotted black line shows
projected untreated tumor growth using Fisher’s approximation: D = 1.43 mm2/year, ρ = 16.52 /year.
b Detail of a with typical response window (TRW) of −30 to +20% of pre-treatment radius

determined according to the standard treatment protocol such that the sum of all dose
fractions did not exceed 61.2 Gy + 5%. For XRT schedules with DOT less than 10
days, the BT was set to one day and dose distributions computed consistent with the
standard treatment course.

A clear benefit of a mathematical simulation of radiation therapy is the ability to
observe tumor response at any time during the course of treatment. This of course is not
the case with real tumors, and the relative infrequency of MRI observations suggests
we consider a clinically based response metric relative to the last observation point,
usually at the beginning of therapy. MRI observations to measure response to therapy
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Table 1 Forty treatment schedules were simulated: 1–4 FPD and 1, 5, 10, 15, . . ., 40 DOT

XRT fractionation array responses: percent effect

T1Gd T2

1FPD 2FPD 3FPD 4FPD 1FPD 2FPD 3FPD 4FPD

Mean 57.0 −6.8 −27.3 −36.7 14.3 −14.4 −21.8 −25.3

Median 90.6 −15.2 −32.6 −40.6 13.7 −14.6 −22.6 −25.9

Maximum 100 100 71.0 49.3 72.6 26.4 22.6 17.9

Response to each was measured as percent change in pre- to post-treatment radius as in (12), with 100 indi-
cating a CR, 0 no response and negative values indicating tumor progression. Mean, median and maximum
values of percent effect were computed over all DOT for each FPD. Clearly 1 FPD will suffice to yield the
best result on both T1Gd and T2 (bold)
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Fig. 4 Simulated tumor response to XRT using a one per day dose delivery scheme for several days of
therapy with the total dose held constant at 61.2 Gy

are usually conducted within a week after the treatment is completed although MRI’s
may be conducted at any time during therapy. For simplicity, we will assume that the
earliest potential MRI observation is immediately after the last treatment. Therefore,
response to therapy was measured relative to the tumor size at the start of therapy by
taking the percent reduction of pre- versus post-treatment radii for T1Gd and T2 each,
as follows:

percent effect = (rstart − rend)

rstart
(11)

where rstart = radius at start of XRT and rend = radius at end of XRT for each T1Gd and
T2 measures. Therefore a CR, or a complete disappearance of tumor results in 100%
effect, no response results in 0% effect, and negative effect implies tumor progression.
Clearly for the dose distributions considered here, we have limd(x,t)→0 (1 − S) = 0
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Table 2 Forty treatment schedules were simulated using two different dose distribution techniques: 1–4
FPD and 1, 5, 10, 15, . . ., 40 DOT, equal fractions and boost, respectively

XRT dose distribution responses:
Net effect = percent effectequal fractions − percent effectboost

T1Gd T2

1FPD 2FPD 3FPD 4FPD 1FPD 2FPD 3FPD 4FPD

Mean 0.1 0.1 −0.1 0.1 0.4 −0.4 −0.3 −0.4

Median 0 0 0 0 0 −0.5 0 0

Maximum 13.0 2.9 2.9 1.5 3.8 0.9 0 0

Minimum −10.1 −1.5 −2.9 −1.5 −1.9 −0.9 −0.9 −0.9

Net effect quantifies the difference in effect between responses and the dose distribution techniques for each
treatment. Mean, median, maximum and minimum values were computed over all DOT for each FPD. The
widest range of values comes from the 1 FPD regimen, although comparisons across mean and medians
suggest very little difference between boost and equal fractions efficacy in general

for any fixed x and t , so we expect the response to hyper-fractionation to go to zero
as the number of fractions increase, leading to decreased response per fraction and
therefore a decrease in overall response. Conversely, as dose increases, (1 − S) → 1,
we expect a large per fraction response and, therefore, an increase in overall response.
Figure 4 reveals a wide range of responses even within the conventional single dose
per day regimen, with 12.2 Gy daily for 5 days giving the best result in this simulation,
and results of simulations involving all 40 treatment schedules confirm the expectation
in general (Table 1).

Investigation of treatment response to schedules in the array reveals a dramatically
increased response on T1Gd for treatment schedules involving 1 FPD (Tables 1, 2),
compared to 2, 3 or 4 FPD. T2 showed much less response across all schedules than
T1Gd, by at least 40%, consistent with the dose decreasing radially from the T1Gd
abnormality for a typical dose at the T2 radius + 20 mm. The 5 DOT, 1 FPD regimen
yielded the best response of 100 and 72% reduction in tumor radius on T1Gd and T2
(Table 1), respectively. Only 11 of the 40 treatment schedules yielded responses within
the TRW which included the standard therapy. The single fraction per day treatment
provided the best response on both T1Gd and T2 by at least 23% compared to the
other fractionations, excluding the near equivalence of all fractionations for treatment
delivered on a single day, which borders on fatal radiation toxicity [3].

4.3 Radiation dose delivery

Additionally, for each treatment schedule discussed above, simulations were conduc-
ted using dose distributions determined in each of two ways: equal fractions per treat-
ment, and adjusted fractions based on the standard BT and BR as follows:

– Equal Fractions: a single dose distribution is formed as a sum of initial and
boost phase distributions as determined by the pre-treatment tumor concentration,
divided by two, such that the total dose distribution is the product of DOT and
FPD and the per fraction dose distribution not to exceed 61.2 Gy + 5%. The BR is
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Fig. 5 Response to therapy as measured by percent reduction in pre-treatment radius at the end of therapy
as visible on T1Gd and T2 MRI for 1, 5, 10, 15,. . ., 40 DOT at each of 1–4 dose fractions per day using
two different dose distribution schemes: equal fractions and boost. Total dose held constant at 61.2 Gy

determined prior to therapy instead of at the beginning of the BT, and is incorporated
into the per fraction dose distribution which does not change shape or geometry at
all during treatment.

– Boost: for XRT schedules with DOT less than 10 days, the BT was set to one day
and dose distributions are computed consistent with the standard treatment course.
For schedules involving 15 or more DOT, the boost time and BR were determined
at the 6th day before the end of therapy, with the total dose distribution not to
exceed 61.2 Gy + 5%.

Figure 5 illustrates no qualitative difference between dose distribution schemes. This
is significant and surprising in light of the specificity with which the boost dose dis-
tribution targets the T2 region for the majority of treatment. Quantitative differences
between the two dose distribution schemes were taken to be the difference in percent
effect as

net effect = percent effectequal fractions − percent effectboost (12)

across all treatment schedules.
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Fig. 6 Recovery time, measured as the minimum time for which the tumor attains its pre-treatment radius
for each of four fractions per day and 1, 5, 10, 15, . . ., 40 DOT. Recovery time was set to one day for
treatments that yielded no response

The net effect was between ±5% for all but two cases. The largest net effects in
magnitude equaled 13 and−10% for the 1 FPD regimen at 30 and 25 DOT, respectively,
as measured on T1Gd. As shown in Table 2, the mean net effect for T1Gd favored
equal fractions for 3 out of 4 fractionation schemes, however, 3 out of the 4 schemes
for T2 favor boost. The median net effect is zero for all but 2 FPD on T2. This suggests
that the differences between the dose distributions are negligible for a large majority
of the treatment schedules simulated.

4.4 Recovery time

We define recovery time (RT) to be the minimum amount of time between the start of
therapy and the time at which the tumor re-attains its pre-treatment radius as measured
on T1Gd. For treatments which yield no response, the recovery time is defined as one
day.

Recovery time was measured for all 40 treatment schedules and for both dose
distribution schemes. The recovery time falls outside of the DIT and thus a clinically
observable response for only 42% of the total simulated treatment schedules and
fractionations in the array, including the standard treatment. Therefore in 58% of the
cases, the benefit of therapy was either not clinically observable or was not beneficial
at any point.

Interestingly, Fig. 6 reveals a sharp decrease in recovery time from the standard
treatment and the next DOT increment, suggesting that, although not optimal, the
conventional course of therapy does avoid a drastic reduction in efficacy by only a few
tenths of a Gy in dose per treatment. Additionally, the difference in recovery time for
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equal fractions versus boost dose distributions have a mean and median of zero, with
max increase of 7 days for the least effective fractionation, 4 FPD at 10 DOT.

The recovery time analysis suggests that conventional high dose hypo-fractionation
therapy, similar to gamma-knife procedures, yields the highest recovery time and, the-
refore, delays progression of the tumor the most. Moreover, the conventional, daily
fractionation is vastly more effective at prolonging recovery time than multiple frac-
tions per day.

5 Discussion

Although highly idealized, this simple extension of Swanson’s fundamental model
for glioma growth and invasion [4] sheds light on the potential to incorporate existing
quantifications of radiation efficacy, medical and radiological imaging into in vivo
tumor modeling. Investigations into fractionation schedules, dose distribution and
radiation sensitivity ranges reveal the highly individualized nature of dose delivery
and non-linear response to radiation therapy. The results suggest that the conventional
course of treatment, involving radiation dose administered on a per day basis, is much
more effective than several treatments per day, and that an optimal response is produced
by a low frequency, high dose scheme similar to radio-surgical procedures like gamma-
knife. Simulated responses to conventional treatment mirror responses expected for
gliomas within published ranges, and suggest that the model and radiation sensitivity
parameter α qualitatively reflect this phenomenon.

Results of simulations of the XRT schedule and fractionation array show surprisin-
gly little difference between the boost and equal fraction dose distributions, particularly
with respect to T2 response. This is surprising because of the specificity with which
the XRT dose distribution targets the T2 region during the initial phase of conventional
XRT treatment. This suggests that the BT and BR have little net effect on either the
T1Gd or T2 visible portions of the tumor, consistent with recurrence patterns and the
invasive, treatment-resistant nature of gliomas. Although the T1Gd abnormality only
indirectly represents the bulk tumor mass through its leaky neovasculature and may
not shrink to reflect the instantaneous effect of XRT on the tumor, we have used it
as representative of the concentration of viable cells in that area, to remain consistent
with Swanson’s previous work [2].

A significant advantage of our model over others [15,48–50] is the relatively small
number of parameters and input data necessary to run the model (D, ρ and 2 pre-
treatment MRIs). Our ability to calculate simulation parameters based solely on clinical
observations yields a highly individualized and clinically relevant model which is able
to capture macroscopic tumor characteristics and which does not ignorantly simplify or
overcomplicate the mechanisms modeled. Although other models [15,48–50] attempt
a more complicated and mechanistic approach to modeling XRT and response, none
of them can be tailored to an individual via the only clinically available metric for
monitoring disease progression, namely MRI and PET imaging.

Avenues for further investigation include higher dimensional simulations without
the assumption of spherical symmetry, inclusion of chemo and resection therapies,
quantification and minimization of radiation toxicity, incorporation of cell cycle
dynamics as they relate to increased radiation susceptibility, and development of a
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more representative measure of the number of glioma cells remaining after XRT,
as well as the incorporation of PET imaging to identify molecular level resistance
mechanisms such as hypoxia.
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