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The Evolution of Mathematical Modeling of Glioma
Proliferation and Invasion
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Abstract
Gliomas are well known for their potential for aggressive

proliferation as well as their diffuse invasion of the normal-

appearing parenchyma peripheral to the bulk lesion. This review

presents a history of the use of mathematical modeling in the study

of the proliferative-invasive growth of gliomas, illustrating the

progress made in understanding the in vivo dynamics of invasion

and proliferation of tumor cells. Mathematical modeling is based on

a sequence of observation, speculation, development of hypotheses

to be tested, and comparisons between theory and reality. These

mathematical investigations, iteratively compared with experimen-

tal and clinical work, demonstrate the essential relationship

between experimental and theoretical approaches. Together, these

efforts have extended our knowledge and insight into in vivo brain

tumor growth dynamics that should enhance current diagnoses and

treatments.
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INTRODUCTION TO INVASIVE
BRAIN TUMORS

Gliomas, the most common primary brain tumors, are
thought to arise from the supporting glial cells of the brain or
their precursors (1). Because they generally grow and invade
extensively before the patient notes any symptoms, gliomas
are almost impossible to cure. Glioblastomas are the most
malignant and most common gliomas in adults, accounting
for about 50% of all gliomas. Glioblastomas are distin-
guished by necrosis, which may be massive centrally or
more irregular between vascular supplies, and peripheral
cells that diffusely invade the surrounding tissue. The
aggressive behavior of these tumors is reflected in their
100% fatality rate within approximately one year even after
extensive surgery, radiotherapy, and chemotherapy.

Despite continual advances in imaging technology,
glioma cells invade far beyond the abnormality shown on
clinical imaging (e.g. CT, MRI, or PET) and even beyond
gross and microscopic observations at autopsy. The extent is
certainly beyond that guiding present-day radiotherapy of
gliomas, which targets therapy to only an arbitrary 2 cm
beyond the imaged bulk mass of the tumor. Clearly, it is the
invasion into the normal-appearing surrounding tissue that is
responsible for the tumor recurrence even in those tumors
that are radio-sensitive.

DISCOVERING THE IN VIVO DYNAMICS OF
CANCER CELLS, SPECIFICALLY GLIOMA CELLS

In the mid-1900s, major experimental and human
studies converged on the idea that cancer cells divided at
rates that, although varying widely among different cancers,
were relatively constant over long periods of time in
individual cases. Among the pioneers in the study of human
cancers were Collins et al, who observed that metastases in
the lungs visualized by plain x-rays of the chest grew at
constant volume-doubling rates according to a simple
exponential ‘‘law’’ (2). This formulation evoked a tremen-
dous response in investigative human oncology, which has
been extensively reviewed by Araujo and McElwain (3).
However, this ‘‘law’’ fails a priori when one considers that
an infiltrative primary neoplasm, such as a glioma, has an
unknowable fraction that invisibly invades adjacent normal-
appearing tissue, below the threshold of detection, leaving a
correspondingly unknowable fraction that is visible and can
be measured.

The failure of the exponential law was not immedi-
ately obvious as various relatively static models were
developed (4Y11), but recognition of the dynamic invasive-
ness of gliomas soon required inclusion of cellular motility
in addition to proliferative growth. Unfortunately, without
such a biomathematical model as an hypothesis, decades of
potential serial observations without intervening treatment
were lost in the early clinical therapy trials when treatments
were generally ineffective and the only known way to
evaluate the effectiveness of therapy was in double-blind
comparisons involving large numbers of randomized
patients, rather than a more detailed study of individual
patients.

The pioneer in the theoretical analysis of the relation
between cell kinetics and growth of the gross tumor was
Steel (12). Steel’s work made it quickly apparent that there
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was an order of magnitude difference between the times
involved in the definitions of cellular and gross kinetics:
hours to a few days for individual cells, many days and even
months for gross tumors. His work formulated several
equations. Each equation, although relatively simple arith-
metically, involved a large number of unknowns: Tp (the
potential doubling time), Td (the actual gross volume-
doubling time), Tc (the cell cycle time), Ts (the time during
which DNA is being synthesized within Tc), F (a factor
defining the timing of Ts within Tc and the age distribution
of the cells), LI (the labeling index), V (the cell loss factor,
the proportion of newly formed cells that are lost), and GF
(the growth fraction, the proportion of the total cells that are
actually cycling).

To these unknowns, Alvord and Shaw added the
amount of tumor (mostly invisible) left behind after surgical
resection and developed a nomogram (Fig. 1) that approxi-
mated the interrelations between most of Steel_s unknowns
(13). By taking advantage of the simple arithmetic calcu-
lations that two 36.5 doublings of 10 Km cells would
produce about 100 g of tumor and that 36.5 doublings every
10 days would require 365 days or 1 year to produce that
100 g of tumor, they were able to include survival time.
Survival time could either be predicted or, more generally,
be used retrospectively to estimate how much tumor that was
all or mostly invisible to the neurosurgeon or neuroradiolo-
gist that had been left behind at the time of treatment.
Based on what little evidence was present at the time,
Wilson estimated that the gradient of glioblastoma cells
might be approximately exponential, with the concentration
decreasing to approximately 10% every 2 cm (14).

EARLY GLIOMA MODEL DEVELOPMENT:
GROWTH AND DIFFUSION

With this initial research on glioma growth dynamics,
the foundation for a mathematical model began to take form.
The formulation of the model was characterized by a series
of unique model developments, each continually trans-
formed and modified from the previous one. With each
successive model came an intensified understanding of
glioma growth at both the micro and macro level. The
deficiency of each proposed model provided insight into the
necessary improvements for the subsequent proposals.

In the early 1990s, Murray’s group defined the basic
spatio-temporal model, based on the classical definition of
cancer, as uncontrolled proliferation of cells with the capacity
to invade and metastasize (15). This model was simplified by
taking advantage of the fact that gliomas practically never
metastasize outside the brain, producing a conservation-
diffusion equation, written in words in Equation 1.

rate of change of glioma cell density

¼ net diffusion ðmotilityÞ of glioma cells in grey and

white matter þ net proliferation of glioma cell

Under the assumption of classical gradient-driven
Fickian diffusion, this word equation could be quantified
mathematically to produce Equation 2.

¯c

¯t
¼ l q ðDlcÞ þ Qc

Equation 2 describes the dynamics of glioma cells
where c(x,t) is the concentration of tumor cells at location x
and time t. D is the diffusion coefficient representing the net
motility of glioma cells and Q represents the net prolifera-
tion rate of the glioma cells. The ² term is the spatial
differentiation operator, which is in effect a gradient. Initial
conditions for the model were c(x,0) = f(x), where f(x)
defined the initial spatial distribution of malignant cells,
presumably a point source at the center of tumorigenesis.

APPLICATIONS OF GLIOMA MODEL
TO CLINICAL CASES

An extension of this mathematical formulation includ-
ing two cell sub-populations was suitable for analyzing the
first clinical case. Figure 2 illustrates the analysis of the
growth of a recurrent malignant astrocytoma, treated and
followed during the patient’s last year with serial contrast-
enhanced CTs (15). Optimizing the fit between these
observations and the model provided the first estimates of
the model parameters D and Q; D = 10j2 cm2/day (with
7%Y9% ‘‘type 2’’ cells, defined as resistant to the first
chemotherapy) (15) or 10j3 cm2/day (no ‘‘type 2’’ cells)
(16) and Q = 10j2/day.

Woodward et al speculated that these values of D and Q

derived for this one patient might be close to the average for
all high-grade gliomas, with T50% of each possibly encom-
passing the whole range of such tumors (16). This led to the
development, at the level of CT resolution, of a two-
dimensional model in homogeneous tissue bounded by the
ventricles centrally and the skull peripherally. The model

FIGURE 1. A nomographic representation of the relation-
ships between labeling index, cell loss factor (V), growth
fraction (GF), volume-doubling time (Td) and the time to
produce 100 g of tumor beginning with a single 10-Km cell
(A) or continuing with 218.25 cells left behind. Figure
reprinted with permission of Lippincott Williams & Wilkins.
From Alvord EC, Jr., Shaw, CM. Neoplasms affecting the
nervous system in the elderly. In: Duckett S, ed. The Pathology
of the Aging Human Nervous System. Philadelphia, PA: Lea and
Febiger 1991:210Y281(13).
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imposed no migration of cells beyond these brain boundaries.
The tumor was proposed as spherically symmetrical and
appearing grossly to be 3 cm in diameter at diagnosis and
6 cm in diameter at death. These sizes were averages derived
from very wide ranges reported in the few publications
available at the time (6, 17, 18), and similar to those in
subsequent reports (19Y21).

EFFECTS OF RESECTION
Because gliomas are routinely operated upon with

resection of ‘‘all’’ or variable portions of the tumor visible
on imaging, creation of a mathematical model that could
accurately mimic postoperative glioma dynamics was essen-
tial. Such a model was achieved by setting the cell
concentration in the resection site to zero and allowing the
surrounding tumor to continue to grow and diffuse at the
same rates as before resection, continuing to the same

grossly visible average fatal diameter of 6 cm. At this stage
the model, crude as it was, was sufficiently elegant to be
compared with actual glioma growth statistics. Kreth et al
had reported survival curves for two groups of patients, one
biopsied only and one subjected to ‘‘gross total resection,’’
as defined by the neurosurgeon at operation (22). Both
groups also received radiation therapy. The 7-week improve-
ment by ‘‘gross total resection’’ over biopsy was predicted
mathematically (16) and found clinically (22), but even 115
patients were not sufficient to prove this difference to be
statistically significant.

LOW-GRADE GLIOMAS
Up to this point, model development had focused on

describing the growth of high-grade gliomas because of their
rapid advancement and ability to be viewed on CT and other
imaging modalities. In order to increase the applicability of the

FIGURE 3. (A) Virtual survival curves of 4 populations of 9 hypothetical patients having a tumor (all grades of glioma) 3 cm in
diameter and then following resections of 0, 3, 4 or 5 cm diameter (from Woodward et al) (16). (B) Actual survival curves from
27 reports of all grades and treatments of astrocytomas summarized by Alvord (23). Figure reprinted with permission from the
American Association of Neuropathologists. From Alvord EC, Jr. Is necrosis helpful in the grading of gliomas? Editorial opinion.
J Neuropathol Exp Neurol 1992;51:127Y32.

FIGURE 2. Serial CT scans allowing analysis and simulation of the patient with a recurrent malignant astrocytoma. Figure
reprinted with permission of Blackwell Publishing. From Tracqui P, Cruywagen GC, Woodward DE, et al. A mathematical model
of glioma growth: The effect of chemotherapy on spatio-temporal growth. Cell Prolif 1995;28:17Y31 (15).
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model to all gliomas, Woodward et al proposed that low-grade
gliomas might grow one tenth as fast as the high-grade gliomas
(again, with T50% each of D and Q to encompass the whole
range) (16). This was tested against all of the available published
results (Fig. 3A) (23), and established that in silico the model
was able to predict all possible actual survivals (Fig. 3B).

THE DETECTABLE EDGE AS A TRAVELING WAVE
One relationship derived from equation 2 is the Fisher

approximation, which equates the velocity v of the detect-
able tumor margin to twice the square root of the product QD
as follows: v ¼ 2

ffiffiffiffiffiffiffi
QD

p
or D = v2/4Q. This approximation

was originally derived from the observation that a popula-

tion governed by growth and diffusion alone expands at the

constant velocity 2
ffiffiffiffiffiffiffi
QD

p
for large time, thereby expanding

linearly for any given Q and D.
Mandonnet et al were able to show that low-grade

gliomas did indeed grow both slowly and linearly (24).
Figure 4 illustrates that in their first 27 patients it appeared
that the average velocity of the diameter was about 4 mm/
year. We have found it more convenient to speak of radial
expansion, which would be half of this, or approximately 2
mm/year. Concurrently, the constancy of velocity, albeit
much faster, was being confirmed in a single rare patient
with a glioblastoma that was followed with repeated MRIs
for a year without intervening treatment (25). This case
produced a radial velocity of 12 mm/year, six times that of
low-grade gliomas but close to the 10 times that previously
predicted by Woodward et al (16).

This comparison with actual patient data led to the
concept of linear radial velocity of the traveling wave of the
detectable ‘‘edge’’ of all gliomas. A very different geometric
formulation by Mayneord (26) led to the same concept of
linear radial growth of Jensen’s sarcoma, a particular rat
tumor, but this tumor was characterized as having a markedly
necrotic center with the viable tumor cells growing essentially
in two dimensions as a thin surface of viable tumor cells
surrounding the necrotic core. With solid but infiltrating

gliomas, however, the linear radial growth results in a cubic
growth of its visible volume. While all of the cells can
potentially be proliferating exponentially, the radius of the
visible bulk is increasing linearly and its volume is growing
cubically. The major difference between cubic and exponen-
tial growth is that the ‘‘volume-doubling time’’ is not
constant. Instead, the apparent volume-doubling time
decreases progressively, as though any treatment is being
effective, or as though the tumor is obeying Gompertzian or
logistic growth and outgrowing its blood supply. Furthermore,
consecutive volumes of an infiltrating glioma cannot be
converted to a meaningful volume-doubling time according
to the classical exponential hypothesis. Conversely, calculated
‘‘apparent volume-doubling times’’ cannot be converted to
linear radial velocities if the initial volume is not specified for
each case. If this conclusion is true for neoplasms generally, a
lot of work of the last 50 years on growth rates of potentially
infiltrating cancers has become irretrievably damaged.

QUANTIFYING IN VITRO BEHAVIOR
In addition to the analysis of in vivo patient data, the

modeling approach has been successfully used to quantify in
vitro studies of glioma invasiveness. Palfi et al studied the
invasiveness in rodent brain slice assays of 42 low-and high-
grade human glioma specimens obtained at biopsy (27). The
most significant result of this analysis was the linking of
phenotypic behavior of the glioma specimens with their
genotypic expression: those glioma cells with 1p and 19q loss
were less invasive than their 1p/19q-positive counterparts.
This correlates with the general observation that in vivo low-
grade gliomas with 1p and 19q loss generally have a better
prognosis, related to therapy (28) or not (29). Of interest also,
if still unexplained, is the observation that most such tumors
occur in non-temporal sites (30, 31), especially bifrontal (30).

BRAIN HETEROGENEITY:
ISOTROPIC MIGRATION

The original analyses of the mathematical model
assumed homogenous brain tissue so that the diffusion
coefficient D, defining random motility of glioma cells,
was constant and uniform throughout the brain (15, 16, 32).
Recognizing that the model had to be improved to
accommodate the advances in MRI technology that were
coming along in parallel, Swanson et al reformulated the
model to accept different diffusion rates in grey and white
matter (33). This modified model introduced the complex
geometry of the brain and presented diffusion (motility) as a
function of the spatial variable x to accommodate the
observation that glioma cells demonstrate greater motility
in white matter than in grey matter (33). The original word
equation, Equation 1, continued to apply, but the mathe-
matics changed to involve a spatially varying diffusion
parameter, D(x), as shown in Equation 3.

¯c

¯t
¼ l q

�
D ðxÞlc

�
þ Qc;

D(x) is still defined as the diffusion coefficient
defining the net motility of the glioma cells but with

FIGURE 4. Long-term serial MRIs of the first 27 patients with
low-grade gliomas showing slow linear growth of the
diameter. Figure reprinted with permission of John Wiley &
Sons, Inc. From Mandonnet E, Delattre JY, Tanguy ML, et al.
Continuous growth of mean tumor diameter in a subset of
grade II gliomas. Ann Neurol 2003;53:524Y28 (24).
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D(x) = DG or DW, different constants for x in grey and white

matter, respectively.
In order to accurately analyze the dynamics of the

model in heterogeneous brain tissue, a detailed description
of grey and white matter distribution in the brain was
required. Fortunately, the neuro-anatomical atlas from the
BrainWeb database was available, providing a spatial
distribution of grey and white matter for the entire brain at
a resolution of 1 mm3 voxels (34, 35). Swanson et al applied
resection to this model and found that the spatial hetero-
geneity of grey and white matter contributed to the patterns
of recurrence following treatment, ranging from the typical
observed ring recurrence at the boundary of the resection
bed to the less common multifocal recurrence pattern (36).

BRAIN HETEROGENEITY:
ANISOTROPIC MIGRATION

Glioma cells are commonly thought not only to
migrate more quickly in white matter but also to migrate
preferentially along blood vessels and fiber tracts in the
white matter of the brain. Magnetic resonance diffusion
tensor imaging (MR DTI) has recently emerged as a
powerful tool for analyzing the 3D geometry and producing
an in vivo reconstruction of significant white matter tracts.
Jbabdi et al incorporated MR DTI with the model’s Equation
3 augmented to treat the spatial diffusion coefficient D(x) as
a tensor D(x) (37). They simulated the extended model for
the case of low-grade gliomas located within significantly
anisotropic portions of the brain, such as the uncinate
fasciculus between the frontal and temporal lobes (37). Such
a model could easily be applied to other paralimbic low-
grade gliomas invading the arcuate (superior longitudinal)
fasciculus and spreading into the external capsule and lateral
temporal lobe (38).

IMAGING WITH LIMITED THRESHOLDS
OF DETECTION

In addition to the CT observations of Lewander et al
(39) and Greene et al (40), Kelly et al (21, 41) and
Dalrymple et al (20) reported that the histologic ‘‘edge’’ of
the ‘‘solid tumor’’ coincided approximately with the circum-
ference of the tumor visualized by enhanced CT or MRI
(T1-Gd) and that ‘‘isolated tumor cells’’ could be seen
microscopically inside and less commonly outside of the
circumference of the tumor visualized in the T2 image.
Indeed, tumors can be cultured from normal-appearing tissue
4 cm from the edge of a glioblastoma (42). Further
consideration of the possibility of a relationship between
specific MRI sequences (particularly T1-Gd and T2) sug-
gested a measure of the gradient of cellular invasion beyond
the visible ‘‘edge’’ of enhancing malignant gliomas.

Figure 5 illustrates the T1 and T2 detection thresholds
and their failure to image the entirety of the invasive glioma
cells. By setting the T1-Gd concentration at 80% of
maximum and T2 concentration at 2%, Swanson was able
to approximate a gradient of glioma cells that corresponded
to the ratio D/Q (43). Varying Q and D with D/Q fixed allows
the geometry of the tumor growth and invasion to stay the
same, while the time scale on which the growth and invasion
occur changes. For example, two different tumors with D/Q
fixed could appear exactly the same at a single time point
but reach their ultimately fatal size in very different lengths
of time.

The availability of 70 patients with glioblastomas and
pre-operative volumes of T1-Gd and T2 images (Prof.
Robert Rostomily, University of Washington, personal
communication) provided an opportunity to test the limi-
tations of these imaging modalities. Analysis of these
patients improved the model by replacing the average 3 cm

FIGURE 5. Schematic view of a typical glioblastoma as seen microscopically and by MRI in T1-Gd and T2 images.
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diameter at diagnosis with individual sizes and ‘‘gradients’’
at diagnosis (Fig. 6). Unfortunately, none of the patients had
a second MRI before treatment, allowing no way to obtain
individual velocities in this series of patients. There has also
been no advance in the definition of the ‘‘fatal tumor burden,’’
6 cm on average, but with a very wide range (17, 18). The
cause of death is obviously multi-factorial (44) and not every
patient dies of the tumor itself. Nevertheless, about two
thirds of all patients show herniation at death, indicating that
increasing mass is a major cause of death in most patients
and suggesting that there may be a reasonably constant

‘‘fatal tumor burden’’ for most patients, but this still remains
to be proven.

CREATING VIRTUAL CONTROL PATIENTS
Despite these challenges, using an average velocity

allowed D and Q to be calculated for each of the 70 patients
and, with the same criterion of 6 cm diameter at death,
allowed calculation of the predicted survival of each patient
following any extent of resection (biopsy, subtotal resection,
or gross total resection proven by post-operative enhanced
CT). Although the prognosis of individual patients could not
be accurately predicted, the median survivals and the shapes
of the curves in silico were quite satisfactorily close to the
actual, and it was strongly suspected that these would improve
if real velocities could have been determined for each patient.

Figure 7A gives a comparison between the model
prediction and the actual patient data, plotting survival time
against percentage of survivors. It is important to note that
the virtual untreated controls differ for each group of
patients, being modeled as individual patients with exactly
the same size of tumor (both T1-Gd and T2) at the time of
diagnosis but not treated. It is as though each treated patient
had an identical twin that could have been treated differ-
ently. The result is that the duration of survival of the
matched virtual controls for the gross total resection (GTR)
and biopsy/subtotal resection (BX/STR) groups differed by
12 weeks (Fig. 7B), which is about half the difference of the
25 weeks between the actual GTR and (unmatched) actual
BX/STR groups. GTR could not be defined more precisely
clinically except as having resected all detectable tumor by
postoperative enhanced CT. GTR, of course, could be
precisely defined mathematically and we predicted that the
real GTR would probably be between 100% and 125%
resection, the model removing either exactly the entire
hyper-intensity on T1-Gd scan or a 25% margin surrounding
the T1-Gd image. Indeed, the prediction proved correct.

FIGURE 7. (A) Actual survival times of 32 patients treated with gross total resection (GTR) as defined by post-operative
enhanced CT, 31 patients with subtotal resection (STR) and 7 patients with biopsy (BX) only. (B) As in (A), the actual survival
curves of the 32 patients with GTR and the 38 patients with STR and BX combined compared with their virtual untreated controls
(matched for size and ratio of D/Q from Fig. 6). Note that the patients, generally with the smaller tumors shown in Figure 6,
actually were ‘‘better’’ as shown by the longer survival of their untreated controls GTR and generally had the ‘‘better’’ treatment.

FIGURE 6. Individual radii of 70 glioblastomas visualized by
MRI (T1-Gd and T2 images) at diagnosis (from Prof. Robert
Rostomily, University of Washington, personal communication).
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Notably, all of these developments have used routine
clinical MRIs (5-mm slices with T1-Gd and T2 sequences).
Further advances can easily be incorporated, increasing the
resolution, but current technology is already adequate for
many practical purposes.

BRAIN HETEROGENEITY:
MODELING CHEMOTHERAPY

Chemotherapy would seem to be the most likely way
to reach all tumor cells, both the local bulk and the diffusely
invading cells. However, the drugs must be able to penetrate
the normal blood-brain barrier. Even then, the heterogeneity
of the vascular density within the grey and white matter can
affect the results. Swanson et al showed that, although the
total number of tumor cells within the brain may be
decreasing with chemotherapy, the extent of invasion of
the tumor remains practically unaffected due to the continu-
ing motility of the tumor cells within the white matter (36).
Even though the tumor appears to be regressing on MRI,
extensively invaded tumor cells remain occult, below the
detection abilities of the MRI, primarily throughout the
white matter. Once treatment is stopped, diffuse recurrences
seem inevitable. This suggests a potential difficulty with the
design of clinical trials relying solely on MRI data as a
measure of success of treatment.

VISUALIZING THE RELATIONSHIPS OF D AND Q
Building on the mathematical model of the behavior of

gliomas based solely on their net rates of proliferation (Q)
and diffusion (D), one can construct a log-log graph of D vs
Q (Fig. 8B). One of the advantages of a log-log graph is that
both the products and ratios of D and Q can be expressed as
straight lines. In Figure 8B the diagonal between the point
D = 100 mm2/year and Q = 1/year and the point D = 10 mm2/
year and Q = 10/year represents all of the points where the
product DQ = 100 mm2/year2 and the square root of
the product DQ = 10 mm/year. Thus, using the Fisher
approximation of the velocity being twice this square root,
v = 20 mm/year. One can then add parallel lines represent-
ing any desired velocities (Fig. 8B).

Similarly, the other diagonal between the point D = 10
mm2/year and Q = 1/year and the point D = 100 mm2/year
and Q = 10/years represents all of the points where D/Q = 10
mm2 (Fig. 8A). Parallel lines can be added representing any
desired ratios of D/Q (Fig. 8A). Swanson has made
computerized simulations of glioma growth revealing that
at the average time of diagnosis, when the visible radius is
15 mm, the ratios D/Q of 1, 10, and 100 mm2 represent the
invisible portion to be about 4%, 50%, and 87% of the total
tumor cells (43). Thus, we can speak of the ratio D/Q as an
approximation of the ‘‘Invisibility Index.’’

These graphs could, of course, have been constructed
on a simple linear scale (Fig. 8D), but the products would
have been curved (hyperbolic) and the ratios diverging
straight lines, so that the relationships would have been
obscured rather than revealed.

One is now in a position to see where any particular
glioma fits in this scheme of things, where all of the lines are
superimposed, using a 3-cycle log-log format to include all
of the values so far found for low-and high-grade gliomas
(Fig. 9). Low-grade gliomas are in the bottom left, their
velocities averaging 2 mm/year (24); and high-grade gliomas
are in the top-right, enclosed within a rectangle defined by

FIGURE 8. (A) Log-log graph of D vs Q, with the diagonals
D/Q = 5, 10 and 20 mm2. Computer simulations reveal that
these represent an Invisibility Index with approximately 40%,
50%, and 60% of the glioblastoma at the time of diagnosis
remaining invisible, infiltrating the surrounding normal-
appearing tissue. (B) The opposite diagonal for QD = 100
mm2/year2 or the velocity v = 20 mm/year, with additional
lines for v = 10 and 40 mm/year. (C) Combining A and B onto
one log-log graph. (D) Linear graph of D vs Q, the hyperbolic
(curved) lines for QD = 25 (not labeled), 100 and 400 mm2/
year2 and radiating lines for D/Q = 5, 10, and 20 mm2.

FIGURE 9. A3-cycle log-log graph of D versus Q summarizing
the distribution of high- and low-grade gliomas found so far (24).
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D/Q of 2 to 20 mm2 and velocities of 10 to 200 mm/year.
Gliomatosis without detectable mass would be in the lower
right corner, above which would come gliomatosis with
small masses in grey matter (e.g. ‘‘hypertrophy’’ of the pons
or thalamus). In the upper left would appear those gliomas
that are curable by resection (e.g. pilocytic astrocytomas).
In between these extremes are the other gliomas, with
‘‘slow growing,’’ ‘‘rapidly growing,’’ ‘‘slightly infiltra-
tive,’’ ‘‘markedly infiltrative,’’ etc. being favorite expres-
sions of most grading schemes. However, a glance at
Figure 9 should convince almost anyone that the over-
lapping of the two major behavioral characteristics at right
angles to each other makes a single-digit grading scheme
unlikely to be successful.

Although the ratio of the volumes of T1-Gd and T2
images is not the correct calculation, larger volume ratios
would generally correlate with larger values of D/Q and,
therefore, with more diffuse tumors that would be less
susceptible to GTR (45). That such tumors are more likely to
be EGFR-amplified (45) with a poorer prognosis (46) are
interesting observations, but it would be even more interest-
ing to recalculate the volume ratios to D/Q, the prediction
being that EGFR-amplified gliomas should have higher than
average D/Q.

Now that the specific behavioral characteristics can be
defined for each case, we believe that the time is ripe for the
correlation of morphologic features of individual cases, not
just the average or range within groups of cases. Beyond
this, one can look forward to defining when and why
contrast enhancement occurs in MRIs and the probable
concomitant neo-angiogenesis induced by hypoxia/hypogly-
cemia resulting from local hypercellularity as a ‘‘low-grade’’
glioma ‘‘progresses’’ to a higher grade. There may be an
increase in velocityYan unfavorable ratio of D/QYwhich in
the ‘‘natural history’’ of that glioma leads to one or more
foci of greater metabolic demand than the native blood
vessels can provide. The increase in vascularity may or may
not be adequate, with inadequacy leading to necrosis, a
hallmark of glioblastoma. But here too, an unfavorable D/Q
allows the range of velocities to be quite marked, so that
patients may survive only a few months or even a few years
without the neuropathologist being able to recognize the
difference in D and/or Q characteristic of each case. There
may be some mathematical relationship between proliferation
(e.g. MIB-1) and apoptosis (e.g. caspase-3), but it is not likely
to be a simple subtraction or division in view of the different
time courses of the processes involved.

SUMMARY
We have presented an historical account of the

iterative comparisons of theory and reality, which have
allowed the progressive improvement of a relatively simple
bio-mathematical model of the visible and invisible expan-
sion of an infiltrating neoplasm, specifically a glioma. The
spatio-temporal model began at the relatively crude level of
resolution available on CT scans in homogeneous tissue
bounded by the ventricles and skull. It has advanced to
accommodate heterogeneous tissue with differences in grey

and white matter with an anatomic accuracy of 1 mm3 and
can use current routinely available MRIs to evaluate the
effects of specific treatments in individual patients. The
present model has the novel, if not unique, capability to
distinguish different mobilities in grey and white matter,
with an estimated factor of 5 but an expected range of 10 to
100. Mobility in white matter is not likely to be isotropic,
but more likely to be differentiated into specific tracts along
which malignant cells may migrate even more easily. This
has recently been modeled by anisotropic diffusion (37).
This grey-white novelty is currently useful in two areas:
1) the theoretical construction of virtual examples that
mimic real MRIs, and 2) the comparison with autopsy
specimens. The virtual examples provide insight into the
extent of the invisible infiltrating portion of gliomas,
especially in explaining why they are essentially incurable
regardless of the extent of resection and why chemotherapy
must enter through normal blood vessels well in advance of
the infiltrating tumor cells. As resolution increases in routine
clinical MRIs, these virtual examples will undoubtedly begin
to be approached in vivo.

The progress of mathematical modeling in the field of
human oncology has greatly expanded from the major
contributions of Collins et al in 1956 (2) and Steel in 1977
(12). This article has discussed only gliomas, but there is
certainly a significant overlap with current mathematical
modeling efforts concerning other cancers. With the inevi-
table and continuous advancements in imaging, it is clear
that the progress in modeling will continue to transform our
understanding of in vivo tumor dynamics. We believe that
increased understanding of tumor growth dynamics will lead
to improvements in the diagnosis and treatment of these
diseases.
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