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A recent computational model of brain tumor growth, devel-
oped to better describe how gliomas invade through the adja-
cent brain parenchyma, is based on two major elements: cell
proliferation and isotropic cell diffusion. On the basis of this
model, glioma growth has been simulated in a virtual brain,
provided by a 3D segmented MRI atlas. However, it is com-
monly accepted that glial cells preferentially migrate along the
direction of fiber tracts. Therefore, in this paper, the model has
been improved by including anisotropic extension of gliomas.
The method is based on a cell diffusion tensor derived from
water diffusion tensor (as given by MRI diffusion tensor imag-
ing). Results of simulations have been compared with two clin-
ical examples demonstrating typical growth patterns of low-
grade gliomas centered around the insula. The shape and the
kinetic evolution are better simulated with anisotropic rather
than isotropic diffusion. The best fit is obtained when the an-
isotropy of the cell diffusion tensor is increased to greater
anisotropy than the observed water diffusion tensor. The shape
of the tumor is also influenced by the initial location of the
tumor. Anisotropic brain tumor growth simulations provide a
means to determine the initial location of a low-grade glioma as
well as its cell diffusion tensor, both of which might reflect the
biological characteristics of invasion. Magn Reson Med 54:
616–624, 2005. © 2005 Wiley-Liss, Inc.
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Low-grade (WHO grade II) gliomas are initially slowly
evolving tumors, but can become rapidly fatal after ana-
plastic transformation. Because of their infiltrative charac-
teristics, surgery alone fails to cure these tumors, even in
their premalignant stage. Indeed, these tumors may not
form a solid mass but may invade diffusely throughout the
brain parenchyma as “gliomatosis cerebri.”

Recently, a biomathematical model (1) has been pro-
posed to quantitatively describe the growth rates of glio-
mas visualized radiologically. This model takes into ac-
count the two major biological phenomena underlying the
growth of gliomas at the cellular scale: proliferation and

diffusion. The simplest choice for the proliferation term is
a constant growth rate �, leading to an exponentially grow-
ing total number of glioma cells. For the invasive proper-
ties of gliomas, cell migration is assumed to be a random
walk, corresponding to a passive (Fickian) diffusion char-
acterized by a single coefficient D. Simulations of this
proliferation–diffusion equation are performed on a 3D T1

MR structural image of the brain, with segmentation of
CSF (which corresponds to the boundaries of the paren-
chyma), white matter, and gray matter images.

In previous publications (2), the diffusion of cells in
white matter is assumed to be 5 (to 100) times higher than
in gray matter, consistent with observations that glioma
cells migrate more quickly in white matter than in gray.
Within white (or gray) matter, cell diffusion was consid-
ered an isotropic phenomenon. However, it is commonly
accepted that glioma cells migrate preferentially along a
direction favored by white matter fibers (3–7). The com-
plex gross anatomical shape usually exhibited by low-
grade gliomas is thought to be a direct consequence of this
anisotropic cell diffusion.

In the past few years, diffusion tensor imaging (DTI) has
emerged as a powerful tool to analyze the 3D geometry of
white matter pathways. It allows the virtual in vivo dis-
section of white matter tracts (8–11) in healthy volunteers.
Usefulness of DTI in the management of brain tumors is
also under investigation (12). Determination of white mat-
ter tracts deformed by tumors appears to be a promising
application for use in surgical planning (13).

In this paper, we propose to use DTI data for modeling
anisotropic diffusion of cells and to show, by comparison
between clinical data and results of simulation, how DTI
data improves the diffusion–proliferation model of brain
tumor growth.

The outline of this paper is as follows: first, we intro-
duce the mathematical model that generalizes the diffu-
sion–proliferation process of tumor growth and propose a
numerical method to solve it. Simulations are then pre-
sented in the Results and compared to patient data. In the
Discussion, the improvements brought by the model are
highlighted and the limitations of the study are discussed,
as well as the perspectives and the possible improvements
that could be made in the future.

THEORY

Model

Different models of tumors growth in space and time have
been proposed (14–17). In the case of infiltrative tumors
such as low-grade gliomas, it is usual to model the evolu-
tion of cell concentration. Generally, tumor growth due to
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net cell division can be represented by a differential equa-
tion in time,

�c
�t

� f�c�, [1]

where c is the glioma cell concentration and f is a function
representing the temporal evolution pattern of the growth.
For example, some functions f that have been used in other
works are (14)

f�c� � �c (exponential proliferation) [2a]

f�c� � �c
c � cm

cm
(Verhulst or logistic law) [2b]

f�c� � �c ln�cm

c � (Gompertz law), [2c]

where � is an empirical modeling factor. For the exponen-
tial model, � is the relative increase of cell concentration
per time unit. Spatial models, on the other hand, try to
explain the spreading of tumor cells in space and the
resulting shape of the glioma. The simplest way to repre-
sent cell migration is by assuming a Brownian-like random
motion of cells, i.e., a diffusion process with some con-
stant diffusion coefficient D.

Finally, the resulting partial differential equation (PDE)
combines proliferation (time component) and infiltration
(space component) of tumoral cells and states that the
change in tumor concentration is the result of spatial
spreading and cell division (15),

�c
�t

� D�2c � f�c�, [3]

where �2 is the Laplacian operator.
However, this model remains too simple because it does

not take into account the heterogenous nature of the brain.
Indeed, it has been observed that tumoral cells diffuse
more rapidly in white matter than in gray matter (5). This
tumor behavior has been previously addressed by adding a
spatial dependence for the diffusion coefficient D, so that
the rates of glioma cell migration depend on the location
x � (xi)i � 1,3 in the brain (16),

�c
�t

� �.�D�x��c� � f�c�, [4]

where D(x) � Dgray in gray matter and Dwhite in white
matter and where � is the gradient operator. We propose to
further generalize this model to take into account not only
the heterogeneity of the brain tissue but also its anisotropy,
dealing with the fact that glioma cell migration is facili-
tated in the direction of white matter fibers. Equation [4]
can be rewritten,

�c
�t

� �.�D�x��c� � f�c�, [5]

where D is the diffusion tensor that describes tumor cell
diffusion, i.e., a 3-by-3 symmetric positive definite matrix
that models the local anisotropy of the cell diffusion ten-
sor. Thus, our model takes into account both location and
direction within the structure of the brain tissue. The
proliferation f(c) is modeled in our simulations by a logis-
tic law (Eq. [2b]) with cm � 105 cells/mm3.

To complete the model formulation, initial conditions
are defined as c(0, x) � c0(x) and, to inhibit migration of
glioma cells outside of the brain tissue, D(x)�c � n � 0 for
x on the sulcal and ventricular boundary of the brain,
where n is the surface normal.

Implementation Issue

To solve Eq. [5], i.e., to estimate the cell density c, we
propose using 3D finite differences (18), which consists of
approximating temporal and spatial derivatives by their
discrete expressions. First, considering the exponential
model given in Eq. [2a] for the proliferation term in Eq. [5],
we want to solve the following PDE,

� �c
�t

� �.�D�x��c� � �c

c�0,x� � c0�x�
, [6]

where c0 is the concentration of the tumoral cells at t � 0.
Each part of this PDE is then discretized using �T as a time
step and (�X, �Y, �Z) as space steps. We obtain the fol-
lowing discrete equation,

Cn�1 � Cn

�T
� ACn, [7]

where Cn is a vector representing cell density at the time n�T
and A is a large sparse matrix representing discrete operators
(the construction of this operator is developed in the Appen-
dix). This is the forward Euler method. We use the 	-method
instead of the forward Euler method in order to increase
numerical stability. The 	-method consists of combining for-
ward and backward numerical schemes (18), as follows:

Cn�1 � Cn

�T
� �1 � 	�ACn � 	ACn�1, [8]

The choice of 	 � [0, 1] and �T is discussed in the Ap-
pendix.

Denoting 
n � Cn�1 � Cn, we compute the cell concen-
tration at time (n � 1)�T by first solving the equation

�I � 	�TA�
n � �TACn, [9]

where I is the identity matrix, which gives the value for 
n.
We use the preconstrained gradient method as imple-
mented in Matlab� (The Mathworks) to solve this large
sparse system and get the concentration Cn�1 as

Cn�1 � Cn � 
n [10]

Initial conditions are represented by a glial cell concentra-
tion C0 in a voxel manually selected. A typical simulation
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takes about 30 min on a 2.4-GHz processor with 2 GB of
virtual memory.

MATERIALS AND METHODS

Patient Data

We selected MRIs of patients who had been followed for a
WHO grade II glioma study at the Pitié Salpêtrière Hospital
between 1994 and 2001. We focused on patients with tumors
centered on the insula and extending into the temporal
and/or frontal lobes because of the known anisotropy of the
white matter in these regions. We followed the extension of
the tumor on FLAIR (or T2) sequences on serial images over
months to years and before any specific treatment.

DTI Data Acquisition

Because there is no DTI atlas available, and no MRIs of the
patients in a numerical format, the tumor growth simulations
were done on a healthy subject data set (structural T1 and
DTI). Six gradient-weighted and one T2-weighted image were
acquired on a 1.5-T MR Scanner (GE Signa) using the follow-
ing scan parameters: 128�128 image matrix, 2.03 mm in-
plane pixel size; 3.5 mm slice thickness; b � 1000; (TR;TE) �
(5000;91.8) ms; number of averages � 8. Thirty-six contigu-
ous slices covering the whole brain were acquired. The total
scanning time was approximately 14 min.

Tensor Preprocessing

Tensors were reconstructed as described in Ref. (19). For
our simulations, we needed to artificially increase the
anisotropy of white matter voxels. This modification is
motivated by the fact that the interaction of tumoral cells
with white matter fiber bundles is more complex than
water diffusion. Indeed, glioma cells tend to attach and
migrate along anatomical structures such as myelin (20),
which could result in a higher anisotropy. Thus, we used
DTI data to provide tensor directionality, but we modified
the water diffusion values.

Let (
i,ei)i�1,2,3 denote the eigenvalues and eigenvectors
of the water diffusion tensor D. We used the following
transformed tensor D to represent the diffusion tensor of
tumor cells:

D� � 
� 1�r�e1e1
T � 
� 2�r�e2e2

T � 
� 3�r�e3e3
T. [11]

This operation modifies the eigenvalues of the tensor,
but not the eigenvectors, which implies that the tensor
orientation is preserved while the diffusion values along
the principal axes and the anisotropy are changed. The
transformation is controlled by a parameter r. When r
equals 1, the tensor is not changed. r � 1 corresponds to
a decrease in anisotropy and r � 1 to an increase in
anisotropy. We detail in the Appendix how we chose the
functions 
� i(r), taking the shape of the tensor and the
fiber crossing issue into account. The effect of the in-

FIG. 1. RGB color maps of the tensor’s principal
diffusion directions. Left: tensor with no change in
tumor cell diffusion anisotropy compared to water
anisotropy (r � 1). Right: Tensor with change in
tumor cell anisotropy (r � 10).

FIG. 2. Starting location of the simulations. The blue (resp., red)
arrow indicates a starting point located in the insular (resp., tempo-
ral) part of the uncinate fasciculus.
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crease in anisotropy can be seen on the RGB image in Fig.
1 representing the principal diffusion directions (21).

Choice of Parameters

The proliferation parameter � was set to the constant value
of � � 0.0012 day�1, corresponding to the observed growth
rate of high-grade gliomas divided by 10, to approximate
the growth rate of low-grade gliomas (16, 17, 22).

For the cell diffusion tensor D, we keep a fivefold dif-
ference between the mean diffusion in gray and white
matter: Dwhite � 5Dgray as previously reported (16). Dwhite

and Dgray are not known exactly because many tumors
involve both gray and white matter. Therefore, we esti-
mated Dwhite and Dgray using the total mean diffusion
empirically observed for typical tumors that contain both
gray and white matter. The total mean diffusion was esti-
mated based on two facts. First, Mandonnet et al. (23), in a
study of patients suffering from low-grade gliomas, re-
ported that the diameter of the detectable part of the tumor
expands about 4 mm per year. Second, one can show that
the detectable diameter d obeys the asymptotic law (15)

d�t� � 4�D� t, [12]

for large time t, where D is the mean cell diffusion and � the
net proliferation constant for an exponential proliferation
law. Thus, we take D � 7.5 � 10�3 mm2 day�1, which is the
value corresponding to a detectable diameter growing of
4 mm per year and a proliferation rate of � � 0.0012 day�1.
This value corresponds to the mean of gray matter and white
matter diffusion under the assumption that the tumor con-
tains equal amounts of white and gray matter, so by simple
algebra, and assuming Dwhite � 5Dgray, we have Dwhite �
10�2 mm2 day�1 and Dgray � 2.10�3 mm2 day�1.

RESULTS

The aim of this study is to simulate tumor growth in a
normal brain to best fit patient data, given the prepro-
cessed DTI data obtained from a normal subject. The re-
sults were visually compared to patient MRIs. For all the
simulations, the initial concentration c0 was set to 200
cells/mm3 in one voxel. The cell density threshold of
detection was set to 500 cells/mm3. Actually, the value of
this threshold influences the duration before the tumor is
apparent on simulated MRI images, but neither the kinet-
ics of the extension of the tumor front nor the shape of the
tumor is affected.

We first performed growth simulations to analyze the
shape on MRI of the gliomas. Figure 3 shows the comparison
between a clinical MRI at diagnosis and the results of both
isotropic and anisotropic simulations. We assumed that the
tumor started to grow in the inferior part of the insula (see
initial voxel indicated by a blue arrow in Fig. 2). The shape of
the tumor on the patient’s MRI (Fig. 3a) is better fitted by the
anisotropic simulation (Fig. 3b) rather than the isotropic one
(Fig. 3c). This is especially true for the posterior extension in
the temporal lobe, corresponding to the invasion of the infe-
rior fronto-occipital fasciculus and the optic radiations. We
have increased the diffusion tensor anisotropy by varying the

parameter r (r � 5, 10, 20, 100). The best “de visu” fit was
obtained for a value of r � 10.

We have also launched the simulation from a voxel
situated in the temporal part of the uncinate fasciculus
(Fig. 2). The resulting tumor shape more poorly repro-
duced the real scan (Fig. 4a), proving the sensitivity of the
shape to initial voxel selection. On the contrary, isotropic
simulation was not dramatically changed by this second
initial voxel (Fig. 4b).

We also tested the model to describe the kinetics of
tumor growth. We selected a patient with a tumor spread-
ing along the arcuate fasciculus (Figs. 5 and 6), with two
MRI scans at an interval of 7 years (and without any
specific treatment during this period). The results show
that � and D model the tumor growth well, but does not
show a clear advantage of using the anisotropic model.

Finally, considering a constant product D•�, we have
tuned the ratio Dwhite/�, between 5 and 35 mm2. As already
mentioned in Ref. (24), this ratio is related to the width of
the cell density profile. Indeed, for small values of this
ratio, the cell density profile is sharp, with a rapid de-
crease of cell density beyond the detection threshold. For
high values, this profile is very broad, leading to an aspect
of gliomatosis on MRI (when the density exceeds the
threshold value). Interestingly, the ratio has only minor
influence on the shape of the tumors.

DISCUSSION

Summary of Previous Work

Computational modeling of glioma growth by a prolif-
eration– diffusion equation was initiated 10 years ago. It
has been used to quantify the effect of chemotherapy on
an anaplastic astrocytoma (15), to analyze the effect of
extent of surgical resection on survival curves (17), and
to suggest a classification based on differential individ-
ual values of D and � (22). A refinement of the model was
proposed by Swanson et al (2, 25). for high-grade glio-
mas. They used a segmented MRI atlas of the brain as a
virtual medium for simulations, allowing differential
motility in gray and white matter. This model gives a
good understanding of the radiological evolution of
high-grade gliomas. To date, this model has not been
used to simulate low-grade glioma growth. The devel-
opment of this new version, including anisotropic dif-
fusion along white matter tracts as given by DTI, was
motivated by the fact that MRI patterns of low-grade
gliomas exhibited complex shapes that were not pre-
dicted by an isotropic model.

Anisotropic Diffusion

In this work, DTI information was used in a 3D MRI atlas
to include anisotropic diffusion in a proliferation–diffu-
sion model of brain tumor growth. This anisotropic diffu-
sion is mandatory to fit correctly the shape of the lesion
seen on MRI. Indeed, even with a differential motility
between white and gray matter, it is not possible isotropi-
cally to obtain a tumor shape as in Fig. 3, at least not with
a single voxel as the initial state. In this case of the aniso-
tropic proliferation diffusion model, the tumor shape re-
flects the invaded fasciculi: the uncinate, the inferior fron-
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to-occipital, and the optic radiations. Moreover, the anisot-
ropy of cell diffusion tensor must be increased to fit
correctly the clinically observed shape of the tumors. From
a microscopic point of view, this result is not so surpris-
ing, because we do not expect such different objects as a
water molecule (estimated by DTI) and a glial cell to have
the same diffusive behavior. Indeed, cell migration along
fiber tracts is the result of complex interactions, including
facilitated or active diffusion, which we model by simply
increasing the tensor anisotropy by a factor r. To our
knowledge, this is the first report of an experimentally
defined value for the anisotropic glioma cell invasion
along the directions described by diffusion tensor imaging.

Influence of the Initial Location of the Tumor

In this study, we restricted our simulations to a single initial
voxel. This hypothesis seems reasonable because real low-

grade gliomas rarely exhibit multifocal tumors. However,
when successive MRIs are available, one could define the
initial state by considering the first scan (26). In this case, the
problem of multiple initial voxels is no longer relevant.

We have also shown that different locations of the initial
voxel lead to different shapes and different evolutions of
the tumor. Thus, it should be possible to use this model to
determine the starting location of the tumor. This is im-
portant because it is believed that tumor location corre-
lates with other characteristics, such as the genetic molec-
ular profile (27, 28).

Limitations and Questions Raised by the Present Model

We have observed that many fasciculi were invaded in the
simulations, whereas real tumors spread only over one or
two fasciculi. For example, the simulated tumor starting in

FIG. 3. Simulations with a starting point located in
the insular part of the uncinate fasciculus. (a) Pa-
tient data. (b) Anisotropic simulations (r � 10). (c)
Isotropic simulations. Visualization threshold : 500
cells per mm3.
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the arcuate fasciculus invaded all the fasciculi of this
region: arcuate, of course, but also inferior longitudinal
fasciculus, whereas real tumors spread only along the ar-
cuate fasciculus. This discrepancy between simulations

and clinical data suggests that there may exist some un-
derlying biological interaction between tumoral cells and a
specific fasciculus that are not taken into account by this
model.

FIG. 4. Anisotropic (a) and isotropic (b) simulations
with a starting point located in the temporal part of
the uncinate fasciculus (red arrow in Fig.2).

FIG. 5. (a) First MRI for patient data with tumor
within the arcuate fasciculus. (b) Corresponding
image for the isotropic simulation. (c) Correspond-
ing image for the anisotropic simulation. Visualiza-
tion threshold : 500 cells per mm3.
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In the present model, mass effect is not taken into account.
Consequently, we use DTI data from a given normal data set.
This approach makes sense because many low-grade gliomas
usually do not show any significant mass effect on MRI.
Actually, during the final process of this work, we discovered
that other authors were independently performing a similar
work on high-grade gliomas (29). These authors also added a
mechanical model for the bulk part of glioblastoma, inducing
mass effect and deformation of parenchyma. For low-grade
gliomas with mass effect, deformation of surrounding paren-
chyma should be included in the model. A more complex
work would also calculate the changes in DTI data due to
brain deformation.

Because no standard DTI atlas is available, we have used
the data coming from a healthy subject. For the brain
segmentation, we used an automated method (imple-
mented in SPM26) based on gray levels. This method does
not allow a perfect delineation of the subarachnoidal
spaces. For example, in the case of the tumor spreading
along the arcuate fasciculus, there were small bridges of
gray matter in our mask (unlike in the real brain) that
spanned the two edges of the sylvian valley, allowing the
diffusion from one cortex to the other. In real tumors, the
arachnoid, which constitutes an anatomical barrier, stops
this mechanism of extension. Thus, it is of great impor-
tance to segment carefully the brain mask, separating its
different structures and barriers, which requires a good
spatial resolution for the DTI acquisition.

The values of some parameters are only approximations,
because there is a lack of clinical data. As already dis-
cussed, the cell density threshold of detection on MRI has
been set to 500 cells/mm3. This value has been estimated
on comparison of histology and CT. There is no study
aiming to measure this threshold for the different MRI
signals. The ratio D/� is also poorly known. To go a step
further, it would be necessary to analyze tumor cell den-
sity on serial stereotactic biopsies, even in an invisible, but
probably invaded, area on MRI. This is very difficult for
many reasons. First, it is questionable, for ethical reasons,
to do a biopsy of a radiologically normal tissue. Second,
even if such biopsies were available, anatomopathological
methods are still unable to reliably count isolated tumor
cells. Note that different MRI signals revealing different
measures of tumor extent would constitute an interesting
alternative to solve this problem.

CONCLUSION

Using the proliferation–diffusion model, we have shown in
this paper that anisotropic diffusion based on DTI data en-
hances the accuracy of simulation of the growth of low-grade
glioma. Several improvements of the present model will be
implemented in the near future. First, an algorithm is re-
quired for automated (or semi-automated) determination of
the starting location of the tumor. Likewise, a systematic way
should be developed to determine the diffusion, prolifera-
tion, and anisotropy parameters, allowing the best fit with a
radiological evolution of at least three successive images.
These improvements are required to envisage a longitudinal6http://www.fil.ion.ucl.ac.uk/spm/spm2.html.

FIG. 6. (a) MRI of the same patient, after 7 years of
evolution. (b) Isotropic simulation after 7 years of
propagation. (c) Anisotropic simulation (r � 10).
Visualization threshold : 500 cells per mm3.
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clinical study testing the practical usefulness of this sophis-
ticated tool. The goal of the study would be to estimate the
prognostic values of the different parameters, which could
also be helpful to optimize therapeutic strategies. Finally, if
the predictive value of the simulations (at least during the
premalignant phase) is proven, this model would provide a
new way to quantify treatment effects of low-grade tumors,
whose long survival times render randomized clinical trials
very difficult to organize.
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APPENDIX

Finite Differences

Let c(t,x) denote the cell concentration at time t and loca-
tion x of the space. Developing Eq. [5] leads to the equation

�c
�t

� �
i,j�1

3

Dij

�2c
�xi�xj

� �
i�1

3

D̃i

�c
�xi

� �c, [A1]

where

D̃i � �D��i � �
j�1

3
�Dij

�xj
. [A2]

D̃ is derived from the tensor D by computing its element-
by-element gradient. Let c(n�T,i�X,j�Y,k�Z) � Ci,j,k

n and
let Cn denote the vectorized version of Ci,j,k

n , we use the
following discrete schemes for computing the derivatives:

�c
�t
3

Ci,j,k
n�1 � Ci,j,k

n

�T

�c
�x
3

Ci�1,j,k
n � Ci�1,j,k

n

2�X

�2c
�x23

Ci�1,j,k
n � 2Ci,j,k

n � Ci�1,i,j,k
n

�X2

�2c
�x�y

3
Ci�1,j�1,k

n � Ci�1,j�1,k
n � Ci�1,j�1,k

n � Ci�1,j�1,k
n

4�X�Y
[A3]

and similarly for
�c
�y,

�c
�z,

�2c
�y2,

�2c
�z2,

�2c
�x�z,

and
�2c

�y�z
.

We obtain the following discrete expression for Eq. [5]:

Ci,j,k
n�1 � Ci,j,k

n

�T
� D11

Ci�1,j,k
n � 2Ci,j,k

n � Ci�1,j,k
n

�X2

� D22

Ci,j�1,k
n � 2Ci,j,k

n � Ci,j�1,k
n

�Y2 � D33

Ci,j,k�1
n � 2Ci,j,k

n � Ci,j,k�1
n

�Z2

� 2D12

Ci�1,j�1,k
n � Ci�1,j�1,k

n � �Ci�1,j�1,k
n � Ci�1,j�1,k

n �

4�X�Y

� 2D13

Ci�1,j,k�1
n � Ci�1,j,k�1

n � �Ci�1,j,k�1
n � Ci�1,j,k�1

n �

4�X�Y

� 2D23

Ci,j�1,k�1
n � Ci,j�1,k�1

n � �Ci,j�1,k�1
n � Ci,j�1,k�1

n �

4�X�Y

� D̃1

Ci�1,j,k
n � Ci�1,j,k

n

2�X
� D̃2

Ci,j�1,,k
n � Ci,j�1,k

n

2�Z

� D̃3

Ci,j,k�1
n � Ci,j,k�1

n

2�Z
� �Ci,j,k

n [A4]

which can be rewritten as

Cn�1 � Cn

�T
� ACn, [A5]

where A is a big sparse matrix with 19 diagnonal element
and where elements of A depend on D, D̃, �, and on the
space/time discretization stepsizes (�T, �X, �Y, �Z).

To fit the best solution, we must choose the algorithm
parameters �T and 	 with care. If we neglect the diffusion
term in Eq. [8], we obtain the scheme

Cn�1 � Cn

�T
� �1 � 	��Cn � 	�Cn�1

[A6]

Cn�1 �
1 � ��T	 � ��T

1 � ��T	
Cn

Denoting u � ��T, we obtain the following solution for an
initial condition C0:

Cn � �1 � 	u � u
1 � 	u � n

C0. [A7]

The analytical solution for this exponential proliferation
law is Cn � C0 en��T, leading to the relation

�1 � 	u � u
1 � 	u � n

� enu, [A8]

which gives a relationship between the parameters

	 �
1
u

�
1

eu � 1
�

1
��T

�
1

e��T � 1
. [A9]

In this case, the diffusion D is zero.

Tensor Transform

In order to achieve the tensor transformation, we need to
define three indices that give information about the shape
of the tensor. Let cl, cp, and cs be, respectively, the linear,
planar and spherical indices for the tensor, defined by (30)
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cl �

1 � 
2


1 � 
2 � 
3
, cp �

2�
2 � 
3�


1 � 
2 � 
3
, cs �

3
3


1 � 
2 � 
3
,

[A10]

where the eigenvalues are sorted in decreasing order (
1 �

2 � 
3). These indices have a simple interpretation: cl �
1 means that the tensor is linear, i.e., there is a single
dominating diffusion direction. A planar tensor cp � 1
occurs when there is a mixture of two equivalent diffusion
directions. cs � 1 is the isotropic tensor case.

To increase the tensor anisotropy without changing its
orientation, one can simply multiply the largest eigen-
value by a factor r and reconstruct the tensor as

D� � r
1e1e1
T � 
2e2e2

T � 
3e3e3
T. [A11]

However, when fiber crossing occurs in a voxel, more than
one diffusion direction is to be favored. In the planar case
(cp � 1), we wish to prevent from diffusing in the direction
normal to the plane defined by (e1, e2). In the spherical
case (cs � 1), no direction is preferred; the tensor should
not be changed. These different cases may be summarized
by the following tensor change,

D� � a1�r�
1e1e1
T � a2�r�
2e2e2

T � a3�r�
3e3e3
T, [A12]

where the vector (ai)i is defined by

� a1

a2

a3

� � � r r 1
1 r 1
1 1 1

�� cl

cp

cs

�. [A13]

The anisotropy change is controlled by the factor r. Note
that for r � 1, the tensor is not changed. This is because the
shape indices sum up to 1: cl � cp � cs � 1. When cl � 1,
only the eigenvalue along the main diffusion direction is
changed (multiplied by r), while the two largest eigenval-
ues are modified when cp � 1. The tensor is not changed
when cs � 1. The eigenvalues of the transformed tensor are
defined by 
� i(r) � ai(r)
i. In order to insure that the mean
diffusion is not affected by this increase of anisotropy, the
transformed tensor is multiplied by a scalar value,

D� 3
trace(D)

�k
� k
D� . [A14]
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