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Abstract

Over the last 10 years increasingly complex mathematical models of cancerous growths have been developed, especially on solid tumors,

in which growth primarily comes from cellular proliferation. The invasiveness of gliomas, however, requires a change in the concept to

include cellular motility in addition to proliferative growth. In this article we review some of the recent developments in mathematical

modeling of gliomas. We begin with a model of untreated gliomas and continue with models of polyclonal gliomas following chemotherapy

or surgical resection. From relatively simple assumptions involving homogeneous brain tissue bounded by a few gross anatomical landmarks

(ventricles and skull) the models have recently been expanded to include heterogeneous brain tissue with different motilities of glioma cells

in grey and white matter on a geometrically complex brain domain, including sulcal boundaries, with a resolution of 1 mm3 voxels. We

conclude that the velocity of expansion is linear with time and varies about 10-fold, from about 4 mm/year for low-grade gliomas to about 3

mm/month for high-grade ones.
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1. Introduction

Gliomas are diffuse and highly invasive brain tumors

accounting for about 50% of all primary brain tumors [1].

The prognosis for patients with gliomas depends on many

factors, including the histologic type and grade of malig-

nancy, the patient’s age and level of neurological function-

ing [2]. However, the ‘‘grade of malignancy’’ includes at

least two factors, net proliferation rate and invasiveness, that

are estimated histologically but practically never defined

accurately. Unlike solid tumors, for which simple exponen-

tial or geometric expansion represents expansion of volume

(equivalent to the number of cells in the tumor), gliomas

consist of motile cells that can migrate as well as proliferate.

Indeed, the invasiveness makes it almost impossible to

define the growth rate as a classical volume-doubling time,
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as Blankenberg et al. [3] attempted, even in the ideal case

where at least two scans (CT, MRI) are analyzed at different

times without treatment intervening. The boundary between

tumor and normal tissue is not sharp and the number of cells

in the ‘‘normal tissue’’ is not determinable. Clearly new

mathematical formulations are necessary for gliomas since it

is practically impossible either to measure the growth rate or

to determine the spatio-temporal infiltration of gliomas

necessary to apply the results of decades of investigations

of mathematical formulations of other cancers.

Considering that the median untreated survival time for

high grade gliomas ranges from 6 months to 1 year [1] and

that even slowly growing gliomas can rarely be cured by

radical resection, it seems clear that gliomas are in fact

biologically malignant. In general, they are not encapsulat-

ed, and even apparently encapsulated ependymomas are not

curable by simple resection [4]. These observations fit with

the fact that individual glioma cells are highly motile, with

the ability to invade most of the neural axis of rats in less

than 1 week following implantation and are known to be

viable even long distances from the bulk lesion in humans

[5]. Additionally, gliomas can exhibit very high proliferation
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rates with doubling times ranging down to 1 week in vivo

[1].
2. Why use mathematical models?

Mathematical modeling is a powerful tool for analyzing

biological problems that allows one to develop and test

hypotheses which can lead to a better understanding of the

biological process. The essentials of a realistic and useful

model are

(i) a sound understanding and appreciation of the bio-

logical problem;

(ii) a realistic mathematical representation of the important

biological phenomena;

(iii) finding useful solutions, preferably quantitative; and

what is crucially important,

(iv) a biological interpretation of the mathematical results in

terms of insights and predictions. The mathematics is

dictated by the biology and not vice-versa [6].

Of utmost importance to mathematical modeling, each

of the variables in the mathematical formulation can be

considered individually or together to assess their signifi-

cance to the biological problem and to suggest hypotheses

or conclusions that can be tested biologically. Upon com-

parison with real life results, the model can be modified to

more accurately emulate the phenomena. This iterative

process of calculating model results and making biological

comparisons can continue to the point at which the model

suggests appropriate experiments to clarify portions of the

biological mechanism not yet understood and to make

realistic predictions [6].
3. A brief history of mathematical modeling of tumor

growth

Cancer research has been a fertile ground for mathematical

modeling, beginning with the early concept of simple expo-

nential growth of solid (usually benign) tumors doubling at a

constant rate: 1 cell, 2 cells, 4 cells, 8 cells, . . .. This concept
was actually found by Collins et al. [7] to apply also to

malignant human tumors, specifically metastases studied by

the simple technique of serial chest X-rays. Kusama et al. [8]

then correlated the survival time following radical resection

of breast cancers with the exponential growth rate. The

introduction of logistic (gompertzian) growth allowed for

the slowing of growth in the later stages as the tumor cells

outgrew their blood supply, producing central necrosis. The

ultimate simplification of this pattern, one actually found in a

particular rat sarcoma [9], became linear mathematically as

the thin surface of viable tumor cells surrounding the necrotic

core grew essentially in only two dimensions. This was also

applicable to simple epidermoid cysts [10].
With the recognition that tumor cells might spread

outside the grossly visible mass, invading locally and/or

metastasizing distantly, and that not all tumor cells are

immortal, the mathematical concepts necessarily became

more complicated than provided by the original simple

models of solid tumors.

Deisboeck et al. [11] suggested that brain tumors behave

as complex dynamic and self-organizing biosystems and used

computer visualizations and simulations involving cellular

automata and agent-based modeling and image processing

techniques. This work has some application to cell cultures

but has not yet been adapted to real gliomas in actual patients.

Experimental studies and theoretical analyses turned to

cellular kinetics, in which the growth fraction and cell cycle

kinetics (especially the S-phase of DNA synthesis and the

rate of incorporation of tritiated thymidine and later bro-

modeoxyuridine) figured extensively. The pioneering work

of Steel [12] led to many variations of flow cytometric

analyses. With these studies it quickly became apparent that

there was an order of magnitude difference between the

times involved in the definitions of cellular and gross

kinetics: hours to a few days for individual cells, many

days and even months for gross tumors.

Steel [12] formulated some of these concepts into rather

formidable equations involving potential and actual volume-

doubling times, cell cycle and DNA-synthesizing times,

mitotic and labeling indices, cell loss and growth fraction.

Additional considerations of the amount of tumor left

behind post-operatively spawned attempts to simplify these

concepts into something more manageable. The recognition

that 36.5 doublings of a 10-Am cell would produce approx-

imately 100 g of tumor in 1 year if the volume-doubling

time was 10 days led to the development of a simple

nomogram [1]; simple, that is, if one accepts several oblique

parallel lines superimposed on a double logarithmic back-

ground, all accommodating at least six labeled axes. This

nomogram allowed approximate solutions to Steel’s equa-

tions [12], but this was merely arithmetic manipulation and

did not address the key question of how to measure the

growth rate of an infiltrating glioma.
4. The mathematical model: interaction of migration

and net proliferation

The initial answer to the question of how to measure the

growth of an infiltrating glioma was provided by Professor

J.D. Murray in the early 1990s. He formulated the problem as

a conservation equation [6]. In words, this is written as

follows:

the rate of change of tumor cell population

¼ the diffusion ðmotilityÞ of tumor cells

þ the net proliferation of tumor cells: ð1Þ



Fig. 1. Cell density profiles for diffuse tumors defined by different values of

the ratio of the proliferation rate q to the diffusion coefficient D. When q/D
is large the tumor is predominantly growing so the cell density profile is

steep and most of the tumor is detectable by an imaging technique. As q/D
decreases, the relative contribution of the motility of the cells increases,

spreading the cell density profile. The more diffuse tumor is less likely to be

accurately identified on medical images.
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Mathematically, the word equation (1) for untreated

gliomas can be reasonably quantified by a single partial

differential equation

Bc

Bt
¼ j � J þ qc

in which c(x,t) designates the tumor cell density at location

x and time t, q denotes the net proliferation rate, and j
defines the spatial gradient operator. Under the assumption

of classical gradient-driven Fickian diffusion, J =Djc, the

model can be written

Bc

Bt
¼ j � ðDjcÞ þ qc ð2Þ

where D is the diffusion coefficient representing the active

motility of glioma cells. The model formulation is complet-

ed by boundary conditions which impose no migration of

cells beyond the brain boundary and initial conditions

c(x,0) = f (x) where f (x) defines the initial spatial distribution

of malignant cells.

The original analyses of the model took the brain tissue

to be homogeneous so that the diffusion coefficient D,

defining random motility of the glioma cells, was constant

and uniform throughout the brain [13–16]. Tumor growth is

generally assumed to be exponential, so that the cell growth

term, qc, in the equation is a constant. However, logistic and

gompertzian growth are also possible and have been con-

sidered but found to be unnecessary in the time frames

considered for gliomas [13,14]. It was found, however, that

there had to be two phases of growth, an early one without

diffusion up to about 1 mm3 before Eq. (2) becomes

applicable; otherwise, gliomatosis cerebri developed with-

out any bulk tumor growth apparent.

An interesting consequence of the basic model assump-

tions is that the profile of the concentration of tumor cells

depends on the ratio of the growth rate U to the diffusion

coefficient D. That is, varying q and D with q/D fixed, the

geometry of the tumor growth and invasion remains the

same, only the time scale on which the growth and

invasion occurs is changed. Specifically, two different

tumors with q/D fixed could appear exactly the same at

a single observation time point but could reach their

ultimately fatal size in very different lengths of time. This

illustrates the clinical difficulty of using only one MRI/CT

observation of the lesion and proceeding with treatment

without really knowing the expected pattern of growth of

the untreated lesion. In Fig. 1 the ratio q/D is largest for

the solid-like tumor and smallest for the very diffuse

tumor. In other words, slowly growing tumors can be

very invasive (e.g. gliomatosis cerebri) and very rapidly

growing tumors can be solid-like. The key is that the

interaction of the growth rate q and motility coefficient D

are critical in determining the characteristics of the tumor

infiltration.

Burgess et al. [16] studied this model in three-spatial

dimensions with spherical symmetry and explored the
varied behavior of intermediate-grade gliomas as opposed

to high- or low-grade gliomas while ignoring the effects of

the brain boundary. They found that there were no mathe-

matical surprises or discontinuities as the continuous vari-

ables q and D combined in different ways. In addition, they

found that highly diffuse intermediate-grade (low q, high D)

gliomas could have a marginally worse survival time than

even high-grade (high q, high D) gliomas, suggesting that

clinical experiments classifying patients as having ‘‘malig-

nant gliomas’’ might be biologically more heterogeneous

than generally considered. In most series, re-evaluations of

the histologic appearances of these tumors have indicated

that about 80% are glioblastoma and the rest are a variety of

other malignant gliomas, so that the biologic variability

already has some histologic basis, even disregarding the

absence of any actual measures of q and D.

To apply the modeling approach to specific patients, a

more realistic look at the brain geometry and structure was

necessary. The recent model by Swanson et al. [17–22] has

introduced the complex geometry of the brain and allowed

diffusion (or cell motility) to be a function of the spatial

variable x to reflect the observation that glioma cells exhibit

higher motility in white matter than in grey matter [23]. The

original conservation word equation (1) still applies but the

mathematical formulation of the model now written

involves spatially varying diffusion, D(x),

Bc

Bt
¼ j � ðDðxÞjcÞ þ qc ð3Þ

where D(x)=DG, a constant, for x in grey matter and

D(x)=DW, another constant, for x in white matter such that

DW>DG. Estimates of the difference in the diffusion coef-

ficients in grey matter and in white matter have ranged from

2 to 100 fold [17,18].

To accurately analyze the dynamics of this model under

the influence of the heterogeneous structure of the human

brain, a detailed description of the grey and white matter
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distribution throughout the brain was necessary. This was

made possible by the neuro-anatomical atlas available on

the BrainWeb database [24–26] defining the spatial distri-

bution of grey and white matter throughout the human brain

at a resolution of 1 mm3 voxels.

To relate the velocity v of the detectable tumor margin

with the net proliferation rate U and a random walk

diffusion coefficient D, we use Fisher’s approximation:

D = v2/4q [6,16]. This approximation comes from the

observation that a population governed by growth and

diffusion alone expands at a velocity of 2
ffiffiffiffiffiffiffi

qD
p

for large

time and is linear for a given q and D. The serial CT scans

used in the development of the original mathematical

model [13] were re-examined to define the rate of advance

of the tumor margin within the grey and white matter, vG
and vW, respectively. Within the tumorous right hemi-

sphere the margin of the detectable tumor moved about

1.5 cm in 180 days [13,15], giving an average velocity of

v = 0.008 cm/day. For a growth rate q = 0.012/day, the

Fisher approximation then suggests the average diffusion

coefficient D = v2/4q = 0.0013 cm2/day. Due to the prox-

imity of this invasion front to the deep cerebral nuclei

(predominantly grey matter within the right hemisphere),

we associate this value with grey matter diffusion: vG at

0.008 cm/day [13] and DG at 0.0013 cm2/day. From the

CT scans, the speed of advance of the tumor margin across

the corpus callosum (white matter) is two to three times as

fast as that in (predominately) grey matter; thus, we

estimate vW>2.2vG at 0.018 cm/day and DW>5DG at

0.0065 cm2/day.
5. Modeling survival time

To compare with practical clinical measures and to

quantify the effectiveness of treatment it was necessary to

model the concept of survival time. Analysis of observations

of actual patients, living [3,27,28] and dead [29,30],

revealed that, although the ranges are wide, gliomas are

detectable on enhanced CT at an average diameter of 3 cm

(based on a sphere of equal volume to the tumor volume)

and fatal at an average diameter of 6 cm. Given estimates of

the model parameters for a particular virtual patient, the

expected survival time could be calculated as the time it

takes for the tumor to grow from 3 to 6 cm in average

diameter.
6. Threshold of detection

Since most of the information regarding gliomas of

specific patients comes from medical images of various

types, it is necessary to translate the model results in terms

of their manifestations on CT, MRI, gross and microscopic

examinations. These obviously differ, but associated with

each imaging technique is a threshold of detection above
which the tumor is detectable and below which it is not. For

this reason, no presently available medical image will show

the entire tumor, including individual cells, because only

that portion of the tumor above the threshold of detection

will appear on the image. For example, close to the extreme,

one 10 Am tumor cell in a pinhead size mass of tissue, say

about 1 mm3, might be cultured in vitro but would require

100 serial sections, each 10 Am thick, to be seen micro-

scopically. To approximate the threshold of detection asso-

ciated with the detectable boundary of a glioma on enhanced

CT, postmortem microscopic analysis of the patient’s brain

with the treated glioma was compared with the apparent

tumor edge defined on enhanced CT, producing an estimate

of the threshold of detection on enhanced CT of 400 cells/

mm2 [13]. Note also that 5 cells/mm2 could perhaps just be

recognized at the usual 10� magnification (which covers

about 1 mm2) but at the next level at magnification (20� )

would be reduced to about one tumor cell in the field and at

the usual high magnification of 40� would be reduced to

one cell in every four fields. This must be close to the

threshold detected by microscopists.
7. Model simulations of virtual gliomas

Simulations of virtual gliomas defined by Eq. (3) are

given on three different planes (coronal, sagittal, and axial)

in Fig. 2. The simulations are presented as contour plots of

the tumor cell density: bright red for high density and blue

for low, superimposed on a background of grey and white

matter provided by the BrainWeb database. The left column

of images relates to the time at diagnosis, the enhanced

MRI-detectable volume being equivalent to a sphere with a

diameter of 3 cm, and the right column to the time at death,

the enhanced MRI-detectable area being equivalent to a

sphere with a diameter of 6 cm. The thick black curve marks

the portion of the tumor detectable on enhanced MRI (400

cells/mm2) whereas the dark blue contour corresponds to the

portion of tumor detectable by a still-theoretical imaging

technique with a threshold of detection 80 times more

sensitive than enhanced MRI (5 cells/mm2), but still not

zero. Note the striking difference between the enhanced

MRI-detectable portion of the tumor and that predicted by

the very sensitive theoretical imaging technique, both at the

time of diagnosis (left column) and at the time of death

(right column).

With this model formulation, a more detailed compar-

ison between actual patient data (CT, MRI, gross and

microscopic) is possible. That is, given the medical images

of the tumor, this model can suggest where the undetect-

able portion of the tumor may have invaded and at what

concentration. This insight might be helpful in defining the

best course of treatment for a specific patient; it would

certainly be helpful to the pathologist in defining where

the tumor might be, at the same time reminding both

pathologists and clinicians how far above zero concentra-



Fig. 2. Sections of a virtual human brain in sagittal, coronal and horizontal

planes that intersect at the site of a glioma originating in the superior frontal

region denoted by an asterisk (*). The left column of brain sections

corresponds to the tumor at diagnosis (3 cm in average diameter) whereas

the right column represents the same tumor at death (6 cm in average

diameter). Red denotes a high density of tumor cells while blue denotes a

low density. A thick black contour defines the edge of the tumor detectable

by enhanced MRI. Cell migration was allowed to occur in a truly three-

dimensional solid representation of the brain. The elapsed time between

diagnosis and death for this virtual glioma is approximately 158 days, about

one-fourth of the total history of the tumor. Reprinted from Swanson et al.

[22], with the kind permission of Nature Publishing Group.
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tion of tumor cells a ‘‘negative’’ microscopic appearance

really is.
8. Modeling chemotherapy: polyclonality and

heterogeneous drug delivery

Since an untreated patient could only recently be found

[19], a treated patient was found with a satisfactorily long

course that allowed not only obtaining realistic parameter

estimates for that patient but also expanding the model to

allow for chemotherapy [13].

Serial CT scans were obtained during the terminal 12

months of a patient with recurrent anaplastic astrocytoma

diagnosed and treated at the University of Washington

Medical Center, Seattle, WA. During this time, the patient

received two different chemotherapies, the first (Course A)

consisting of five treatments of a six-drug protocol (6-
thioguanine, procarbazine, dibromodulcitol, CCNN, 5-fluo-

rouracil, and hydroxyurea). Each course of treatment was

given over 15 days and separated by 6–8 weeks to allow for

regeneration of the bone marrow. Following five cycles of

the six-drug treatments, the patient received two courses of

cysplatinum chemotherapy (Course B) and then, with evi-

dence of additional tumor growth, neutron beam irradiation

was given for the last 3 weeks of life, as shown in Fig. 3.

Cruywagen et al. [14] and Tracqui et al. [13] incorporat-

ed chemotherapy into the spatially homogeneous model

equation (Eq. (1)) by introducing cell death as a loss term.

To accommodate this addition, the basic word equation (Eq.

(1)) was written as follows:

rate of change of tumor cell population

¼ diffusion ðmotilityÞ of tumor cells

þ net proliferation of tumor cells

� loss of tumor cells due to chemotherapy: ð4Þ

If we let G(t) define the temporal profile of the chemo-

therapy treatments, then, assuming a loss proportional to the

strength or amount of therapy at a given time, the word

equation model can be written mathematically as

Bc

Bt
¼ j � ðDjcÞ þ qc� GðtÞc ð5Þ

In the mathematical model, G(t) = k is constant, when

chemotherapy is being administered, and G(t) = 0 otherwise.

Here k is a measure of the effectiveness of the treatment. For

a tumor to decrease in size during chemotherapy, k must be

larger than the growth rate q of the cell population.

The existence of drug-resistant cell subpopulations is

common in chemotherapy (and radiation treatment); see, for

example, Bradford et al. [31]. Cancerous cells are, by

nature, unstable. Therefore, exposure to harsh chemicals

(or irradiation) can induce either the desired cell death or an

undesired sublethal mutation. In the case of the patient

studied by Tracqui et al. [13] and Cruywagen et al. [14],

the possibility was considered that the radiation therapy

administered three years prior to the chemotherapy may

have induced a dynamically distinct subpopulation resistant

to the subsequent chemotherapy. However, the results

showing that both types of cells otherwise appeared identi-

cal suggested that it was the initial exposure to chemother-

apy that induced the resistant cell clone. The model

developed by Tracqui et al. [13] and Cruywagen et al.

[14] included drug-sensitive and drug-resistant tumor cell

subpopulations. The primary cell subpopulation (n) was

postulated to be sensitive to both chemotherapy courses

while a mutant subpopulation (m) was postulated to be

resistant to Course A. Indeed, the results revealed that the

mutant subpopulation (m) had a growth rate similar to that

of the primary tumor cell subpopulation (n), but was less



Fig. 3. Tumor area measured at different levels (referred to as levels 1, 2, and 3) of the brain from 8 CT scans taken during the 12 months before the patient’s

death [13]. During the same terminal year, the patient received five cycles of six drugs (UW protocol) and two cycles of cisplatinum, as indicated, as well as

neutron beam irradiation during the last 3 weeks of the patient’s life. Simulation of the temporal evolution of the tumor area at each of the brain levels

considered. The mathematical model was solved numerically on a two dimensional grid which took into account the meningial and ventricular boundaries at

each level. The model calculated effect of chemotherapies on each level is also shown (solid line). Reprinted from Tracqui et al. [13] with the kind permission

of Blackwell Sciences.
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sensitive to Course B of the chemotherapy than the primary

tumor cell subpopulation (n) was to Course A. This indi-

cates that, although the two subpopulations had similar

growth characteristics, their sensitivity to the chemothera-

pies determined the over-all effect. The model showed

results in good agreement with the observed CT scan areas

(Fig. 3). Thus, the work by Cruywagen et al. [14] and

Tracqui et al. [13] strongly suggested that multiple tumor

cell subpopulations could be modeled to respond differently

to treatment and could be responsible for the treatment

failure observed.

A more detailed analysis by Swanson et al. [20] con-

sidered chemotherapeutic agents in heterogeneous tissue

where drug delivery may vary with vascular density. In

regions of grey matter within the brain, where the vascu-

lature is more dense, chemotherapy effectively decreases

the rate of tumor growth. However, in white matter regions,

drug delivery is ineffective because vascular delivery is

significantly less due to the lower vascular density. Swan-

son et al. [20] discussed a clinical example for which the

model-predicted scenario suggested an explanation for the
observation of shrinkage of the lesion in certain areas of the

brain (grey matter) with continued growth in other areas

(white matter).

The recent experimental work on tumor-induced angio-

genesis by Folkman [32] led to the development of a variety

of models for solid tumor growth including the effects of

angiogenesis [33,34]. Chaplain [33] developed models that

describe the formation and migratory response of endothe-

lial cells in response to chemical stimuli, i.e. tumor angio-

genic factors. Using a discretized form of partial differential

equations, theoretical capillary networks similar to experi-

mentally observed structures were produced. From this, the

flow of nutrients (such as blood and oxygen) to the tumor,

as well as the delivery of chemotherapeutic drugs can be

modeled.

El-Kareh and Secomb [35] demonstrated that mathemat-

ical models accounting for the kinetics of metabolic and

cellular processes can effectively lead to a more rational

basis for optimizing the drug administration of chemother-

apy treatments. Rather than correlating cell kill with extra-

cellular drug exposure, the kinetics of cell uptake and
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metabolism have been examined and cell kill was correlated

with a measure of intracellular exposure. Cisplatin was

specifically investigated, and data demonstrate that the cell

survival fraction correlates better with peak intracellular

bound concentration than with other possibilities.
Fig. 4. Superposition of model-simulated survival times (dotted lines) for

nine hypothetical patients with high rates of growth and diffusion following

varying degrees of resection. The solid lines represent actual survival

curves reported by Kreth et al. [37] following biopsy only (‘K93biopsy’) or

extensive surgical resection (‘K93surg’); both groups of patients also

received post-operative x-irradiation. The median survival times predicted

by the model are 33.4 weeks without resection and 35.0, 41.1 and 52.6

weeks with resection as compared to 32 and 39.5 weeks, respectively in

reality. Reprinted from Woodward et al. [15] with the kind permission of

Blackwell Sciences.
9. Modeling surgical resection

Resection, the surgical removal of an accessible tumor, is

a very common treatment for gliomas even though it has

shown only limited success. Recurrence of tumor growth at

the resection boundary is a well-documented phenomenon

[36,37]. Experimentalists and theoreticians alike believe that

the distantly invaded cells [5,38] are clearly responsible for

tumor reappearance following surgery. The modeling frame-

work suggests that, since the density of cancerous cells

remaining after resection is highest at the resection bound-

ary, reappearance at this location seems most likely. That is,

the gradient-driven diffusely invasive nature of gliomas is

fundamentally responsible for tumor recurrence near the

resection boundary.

Isolated glioma cells have been cultured from histolog-

ically normal brain over 4 cm from the edge of the bulk

tumor [5]. These and other experimental results supporting

the very diffuse nature of gliomas have brought about the

realization that the trend to extend the range of resection,

radiotherapy or other localized treatments is not going to be

generally successful. For example, it is fairly common for
125I seeds to be implanted in the grossly normal parenchyma

neighboring the resection bed. These seeds are intended to

eliminate the diffusely invaded tumor cells at the periphery

of the tumor bed. However, mathematical modeling shows

that at the time of resection many tumor cells have already

migrated not only well beyond the margin of the resection

region but also beyond the radiation effects of 125I. Al-

though resection may have succeeded in reducing the

pressure effects of the bulk tumor, it is the diffusely invaded

tumor cells well beyond the margin that continue to grow

and migrate and damage the normal brain parenchyma,

ultimately causing death.

Estimating the benefit of surgical resection requires a

quantification of the amount of tumor remaining following

resection. Alvord [39] assumed that a certain percentage of

tumor cells remained after resection and suggested a very

simple rule to define the time for the tumor to recur to its

mass before surgery: 50% removal required 1 doubling

time, 75% removal required two doubling times, 87.5%

removal required three doubling times, etc., each halving of

the distance to 100% resection providing one additional

doubling time. Unfortunately, it required estimation of the

classical volume-doubling time, which, as noted in the

introduction, is not readily measurable! A more thorough

approach was taken by Woodward et al. [15], Cook et al.

[40] and Swanson et al. [17,21], who extended the modeling

approach described by Tracqui et al. [13] and Cruywagen et
al. [14] to consider the effects of surgical resection on

glioma recurrence and patient survival.

To simulate surgical resection, the tumor cell density is

set to zero inside the resection bed. The basic conservation

word equation (Eq. (1)) still applies before and after

resection. Three excision diameters were considered: ‘‘gross

total resection’’ (3 cm) and ‘‘extensive resections’’ (4 or 5

cm). Death is assumed to occur when the enhanced CT-

detectable tumor area equals that of a circle with 6 cm

diameter, but the resection bed not only removes some of

the concentration gradient driving the cells peripherally but

also allows migration back into the resection site. Both

increase the duration of survival.

To allow some biological variability in the behavior of

high-grade gliomas, Woodward et al. [15] added the

assumptions that combinations of variations of 50% above

and below the values of q and D calculated from the original

patient would create nine hypothetical patients (three pos-

sible values of U combined with three possible values of D)

having the appropriate characteristics of a real-life popula-

tion of patients with high-grade gliomas. Fig. 4 defines the

survival time (dotted lines) calculated for the three resection

sizes (S = 3, 4, 5 cm) as well as without resection (S = 0) for

these nine hypothetical patients. The model supports the

concept that gliomas infiltrate so diffusely that they cannot

be cured by resection alone. Increasing the size of resection

does increase life expectancy. There are obvious differences

in survival of these hypothetical patients, but how does it

relate to real patients?

The availability of results reported by Kreth et al. [37]

defining the effectiveness of gross total resection, GTR, as



Fig. 5. Velocity of increasing diameter of an untreated glioblastoma [19]

and of the average of 27 untreated low-grade gliomas [43,44] detected on

MRI, adapted from Shaw and Alvord [50]. Note that both types of lesion

have a long silent phase (diameter equals 0) for which they are not

detectable by standard imaging—about 1 year for the high-grade lesion and

9 years for the low-grade lesions. After this silent phase, the dotted portion

of the curves represent the growth of the lesion before it becomes a

clinically detectable size (3 cm in average diameter).
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defined by the surgeon, compared to biopsy alone let

Woodward et al. [15] compare their model results to actual

clinical data. Fig. 4 also shows a superposition of the

survival curves found by Kreth et al. [37] (solid lines) on

those calculated by Woodward et al. [15] (dotted lines). The

agreement between the data sets is remarkable. The model

could predit the behavior of gliomas to a degree of accuracy

not attainable in vivo with ‘‘statistically significant proba-

bility’’ even with groups of over 50 real patients [37]. More

recently the results of 70 patients subjected to biopsy, STR

or GTR (this time defined by the absence of detectable

tumor on post-operative imaging) have been analyzed

[41,42]. There was no difference between the survival

curves of the biopsy and STR and both approximated the

biopsy results of Kreth et al. [37] and the model’s results

without resection; but the results following GTR [42] were

even better than those of Kreth et al. [37], reflecting the

more extensive resection documented by post operative

imaging.

The model firmly supports the concept that gliomas

infiltrate so extensively that they cannot be cured by

resection alone. Increasing the size of the resection does

increase life expectancy but relatively little. Besides the

minimal increase in life expectancy, the model has made no

effort to differentiate eloquent regions of the brain that must

be spared during such surgical procedures. The theoretical

analysis combined with the reality of human brain surgery

suggests that resection can never be the sole solution to the

treatment of these lesions.
10. Extension to lower grade gliomas

Up to this point the focus of the model has been on high-

grade virtual gliomas. Woodward et al. [15] found that

allowing the growth rate and the diffusion coefficient D to

vary by a factor of 10 simulated well the range of survivals

of patients with low- to high-grade gliomas. The 10-fold

variations in q and D allowed for the representation of four

distinct tumor grades: high-grade (high q and high D), two

intermediate-grades (high q and low D or low q and high

D), and low-grade (low q and low D). Although the overall

pattern of growth is similar for each of the tumor grades,

there are major differences in the time scales: low-grade

tumors are generally associated with much longer survival

times (years) than high-grade gliomas (months).

Recent extension to actual low-grade lesions was made

possible by a study by Mandonnet et al. [43,44] who

analyzed a set of 27 untreated lesions (WHO Grade 2

gliomas), mostly oligodendrogliomas, followed with serial

imaging without treatment. Recalling Fisher’s approxima-

tion of a linear progression of the mean radius (or diameter)

of the lesion for long times, Mandonnet et al. [43,44] found

that the mean diameter of low-grade gliomas does, in fact,

fit a linear growth pattern on serial MR imaging: 4.1 mm/

year (95% CI: 3.8–4.4 mm/year) (Fig. 5). Fig. 5 also shows,
for contrast, the temporal progression of an untreated

glioblastoma, a very rare opportunity afforded by a patient

who had repeated CT/MRI examinations without interven-

ing treatment [19]. As Woodward et al. [15] predicted, this

velocity is approximately 10 times that of the low-grade: 30

mm/year. It should be noted that the linearity for both low-

and high-grade gliomas is true only after a long period of

time, but this is typical of the clinically detectable part of the

life histories of the gliomas, as also indicated in Fig. 5.

The observations of some pediatric low-grade astrocyto-

mas led Lazareff et al. [45,46] to conclude that at a

particular volume (approximately 100–150 cm3) tumor

growth may cease. A similar gompertzian growth pattern

for optic gliomas was suggested by Alvord and Lofton [46]

and Alvord [47]. A more specific mathematical model was

developed by Newman and Lazareff [48] involving the

interaction of promoters and inhibitors in the growth of

these lesions.
11. Discussion

In this review we have briefly described the evolution

of mathematical models for glioma growth and invasion

beginning in simple homogeneous tissue, with or without

gross anatomical boundaries (skull and ventricles), extend-

ing to complex heterogeneous tissue, with varying propor-

tions of grey and white matter in cerebral cortex (including

the sulcal pattern), deep cerebral nuclei, brainstem and

cerebellum. These models have been based on ‘‘thresholds

of detection’’ on currently available scans (CT and MRI) to

describe and quantify the diffusive nature of gliomas by

isolating characteristics such as the effect of the ratio q/D
of the proliferation rate q to the diffusion rate D in

defining the spatial temporal pattern of tumorous growth.
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Other factors considered include the effect of chemother-

apy and surgical resection, the differences between high-

and low-grade gliomas (especially with two types of

intermediate-grade gliomas, one with a prognosis even

worse than the high-grade).

Such realistic mathematical modeling has been helpful in

highlighting and demonstrating the fact that any local

treatment of a diffusely invading glioma will fail. Mathe-

matical modeling can be critical in deducing the extent of

sub-microscopic spread of the tumor and thus in determin-

ing the locations of active invasion of the tumor. Whether

this will help localize treatment remains doubtful, however,

since the invasion is most likely still more peripheral than

any localizable treatment can reach. The model predicts that

gliomas can be modeled as traveling waves with diameter

increasing linearly with time, and this has been proven in a

series of untreated low-grade gliomas [43,44] and one

untreated glioblastoma [19]. The model can probably be

expanded to consider the effects of other factors, such as

edema in mediating diffusion (migration), but its main thrust

may be to see if simultaneous CT and MRI scans, such as

Kelly et al. [28] accomplished, provide enough information

to define q and D in individual patients at one point in time.

If so, it may at long last be possible to estimate the

prognosis for individual patients and to provide much more

homogeneous populations of patients for clinical trials.

Although the model predicts the average and the shape of

the survival curve of groups of patients, it is more likely that

two sets of scans without intervening treatment will be

necessary to define q and D accurately enough to predict

the prognosis for individual patients.

As noted in Introduction, mathematical modeling is

dictated by the biology and not the mathematics [6]. We

have attempted to analyze the behavior of gliomas mecha-

nistically, deriving their behavior from two fundamental

properties, q and D. Although these clearly determine the

tumor’s growth as an expansion of its traveling wave front,

other factors combine to determine the patient’s prognosis,

the survival time. The most prominent of the other factors,

age and Karnofsky performance score (KPS), correlate well

with prognosis but are stochastic phenomena that currently

have no underlying mechanisms that are understood well

enough to be incorporated in the model. Thus, in terms of

prognosis the model considers ‘‘ideal’’ patients unencum-

bered by high age and low KPS [49] that prevent such

patients from reaching their predicted survival time.
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