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An article in the current issue of the Journal1 provides the
opportunity to reflect on and discuss the role of mathematical
modeling in the biomedical sciences. During the past 20
years, the application of mathematical modeling in the
biomedical sciences has made substantial contributions to our
understanding of a wide spectrum of problems such as wound
healing, cancer growth, and the control of epidemics. The
literature of applications is now large (see Murray2 and the
large number of references cited therein). There is a funda-
mental difference between what the theoretician and the
medical scientist mean by a “model,” although their goals in
the use of models are the same. The latter usually considers a
model to be, in the case of cancer research for example, an
animal injected with cancer cells and the animal’s and the
cancer’s progress monitored over time. Quantitative or mathe-
matical modeling refers to the use of mathematics to construct
an equation (or, more typically, equations) that reflects in
quantitative terms what are considered by the experimentalist
or clinician to be the key biological processes that govern the
process under study: we give specific examples here. The aim
is to try to understand and, ideally, determine what these
underlying biological mechanisms are. Once a model (mathe-
matical) has been agreed on as a starting point, it then can be
solved, compared with the extant data, and, if in agreement,
importantly, it can be used as a predictive tool.

Let us consider an example in which this scenario has
resulted in an increased understanding of an anomaly in
prostate cancer research. It generally is believed that an
enlarged prostate implies an increased serum prostate-specific
antigen (PSA) level and that it is a quantitative marker of
prostate cancer growth. In the specific problem studied,3 the
clinical model was a xenograft rat model. The theoretical
model uses the basic pieces of biological information and

quantifies them in a simple equation that can be written in
words as follows:
Rate of Change of Serum PSA = Production of Serum PSA
by Benign Prostate Cells
+ Production of Serum PSA by Malignant Prostate Cells
– Loss of Serum PSA From the Body
These words then are translated mathematically to an equa-
tion like the following:
dp = betahVh + betacVc – gamma p
dt

where p, shorthand for p(t), is the serum PSA level at time t;
Vh and Vc are the volumes of benign and cancerous PSA-
producing cells, respectively, and PSA is produced by benign
and cancer cells at the rates betah and betac, respectively.
Basically the math equation is simply a shorthand way of
writing the word equation, but with the important proviso that
assumptions are made about PSA production and loss. It is at
this stage that the biology plays a critical role. The form of
the loss term implies an assumption of exponential loss with
the parameter gamma equal to the reciprocal of the half-life
of circulating PSA. The production terms reflect the assump-
tion that PSA from benign and malignant prostate cells
simply increases linearly with tissue volume. As more is
learned about the biological processes, these assumptions are
replaced by terms that reflect what is found. For example, if it
were suggested by experiment that production was governed
by first-order kinetics, each of the production terms would be
multiplied by p: this would have a major effect on the solu-
tions and their prediction. The whole process of constructing
a mathematical model is that it must reflect what is consid-
ered to be essential biologically. It is relatively easy for a
theoretician to write an equation that could give qualitative
agreement by judicious choice of parameters. The art of good
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modeling involves making the model reflect as closely as
possible what is going on biologically and, most important,
being able to estimate parameter values from the experiment.
Without the latter, the model is of much less use because
with a sufficiently large number of parameters and/or equa-
tions, it is possible to match any data set.

This mathematical model was applied successfully to the
xenograft prostate cancer data.3 In this case, we were able to
estimate the parameters from the experiment. Clearly this
quantitative model is simple and neglects a wide variety of
complicating factors. However, this basic model was successful
not only in fitting observed data, but also in suggesting a new
and clinically relevant interpretation of those data, thereby
leading to a better understanding of serum PSA dynamics.

A major point about mathematical modeling is that if
the preliminary model equation or equation system gives
solutions that are not in agreement with the biology of the
process, the biological input may not be correct. This situa-
tion necessitates reexamination of the biology. This iterative
process can have a useful role in studies that are genuinely
interdisciplinary. It is this iterative aspect that has been so
important in a variety of applications.2 A particularly good
medical example of this converging modeling process is
given by Connor et al.4,5 This model addressed lactate
metabolism in man and resulted in a new clinical way of
determining appropriate medication levels.

The story of PSA dynamics is clearly more complicated
than this simple model: for example, prostate cancer of
different grades produces different amounts of PSA. But
modeling like that described in the preceding text can
suggest much about PSA dynamics. In the previous example,
analysis of the mathematical model revealed that an elevated
serum PSA level did not necessarily result from a large
tumor volume.3 In fact, the model predicts (and the data
support) the hypothesis that rapidly growing tumors can
maintain relatively low serum PSA levels until the tumor is
large compared with slowly growing tumors with similar
serum PSA levels. This result suggests that PSA may well be
a useful marker of tumor growth. However, care must be
taken in interpreting single serum PSA values without refer-
ence to the prostate size. Clearly, before we can understand
prostate cancer and the concomitant PSA production, we
need to understand the mechanisms underlying these
processes. These mechanisms can naturally be studied via
mathematical modeling.

The Use and Abuse of Mathematical
Modeling

We should keep in mind what a truly scientific model
must try to do. It is essential to (1) start with a real biological

situation and try to isolate the key steps in a process, (2) try
to construct a model mechanism (equations) that reflects
these key elements and involves real biological quantities,
(3) investigate the theoretical model mathematically and
obtain solutions with biologically realistic boundary and
initial conditions, and, most important, (4) on the basis of the
theoretical results, return to the biology with predictions,
comments, and suggestions for illuminating experiments that
will help elucidate the underlying biological processes. If the
results do not agree with the known biology, the iterative
process must be repeated. The most notable successes are
those in which the experimentalist and theoretician work on
the model and interpretation together. If the use of a model
stimulates experiments, even if the model subsequently is
shown to be wrong, it has been successful. Models also can
be useful for summarizing, interpreting, and interpolating
real data. There are many such illustrative modeling exam-
ples in which the biology, models, and subsequent experi-
ments are described in detail.2

The increasing use of mathematics in biology is
inevitable as biology becomes more quantitative. The
complexity of the biological sciences makes interdisciplinary
involvement essential. For the biologist, mathematical
modeling offers another research tool commensurate with a
new powerful laboratory technique but only if used appropri-
ately and with recognition of limitations. As has been said
before,2 use of esoteric mathematics arrogantly applied to
biological problems by mathematicians who know little
about the real biology, together with unsubstantiated claims
as to how important such theories are, not only does little to
promote interdisciplinary involvement, which is so essential,
it does measurable harm. The theoretical literature abounds
with many such articles.

Other Examples of Useful Modeling

PSA Half-Life

The need for proper, albeit simple, quantitative modeling
can be illustrated by the example of trying to determine the
half-life of PSA following radical prostatectomy. A search on
MEDLINE reveals at least a dozen articles on the topic (eg,
Bjork et al,6 Haab et al,7 Lein et al,8 Partin et al,9 Ravery et
al,10 Richardson et al,11 Semjonow et al,12 and van Straalen et
al13). In these articles, we find that the calculated half-life of
PSA can range from minutes to days. Clearly, this range
cannot reflect the same process. Closer examination of these
articles reveals that each group of investigators fits the serum
dynamics of PSA after surgery to a different curve. Some
assume a fit to an exponentially decaying function [p(t) = A
exp(–at)], others suggest a biexponential fit [p(t) = A
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exp(–at) + B exp(–bt)], where the a, b, A, and B are constant
parameters to be chosen to get a good fit. Focusing on the
exponential and biexponential forms, a wide variety of decay
rates (a, b) are published. Although in some cases accurate
nonlinear regression techniques are used to fit the biexpo-
nential equation to the data, others use visual estimates of the
cutoff from one exponential to another and fit the first
portion of the data to the A exp(–at) form and the second
portion of the data to B exp(–bt). The mathematical problem
with this is that the decay parameters a and b are highly
sensitive to changes in the choice of cutoff values, which can
predispose to erroneous estimates of half-lives. Although
simple mathematics (nonlinear regression) can be used to
correct these errors, this example demonstrates that curve
fitting is not a model in the sense that the investigators make
no attempt to describe the actual biological process that is
giving rise to these curves. With their philosophy of curve
fitting, why not choose 3 or 4 exponentials? In fact, each of
their assumptions implies a background mathematical
model, even though the biological relevance of the model
may be nonexistent. One has to start with a biologically
based model and then derive the function describing the
concentration of PSA as a function of time.

HIV: Modeling Combination Drug Therapy

Ho et al14 proposed a very basic model for HIV. The
model consisted of a simple linear equation that accounted
for viral production and viral decline via first-order kinetics.
In words the equation is written as follows:
Rate of Change of HIV (V) = Production of Serum HIV 

– Viral Decline
which translates into the (differential) equation
dV = P – cV
dt

where P represents a source of viral peptides and c is the
viral clearance rate. While many factors have a role in the
clearance of viral peptides, such as immune cells, fluid flow,
and absorption into other cells, c did not distinguish between
these factors. After introduction of the protease inhibitor (the
specific type of drug used to treat patients), it was assumed
that the drug would be completely effective, or, in other
words, the drug would block all viral production after being
introduced. Hence P = 0, and we are left with the simple
equation
dV = – cVdt

which has the solution
V(t) = V0e

–ct

where V0 is measured as the mean viral concentration in the
plasma before treatment. Plotting ln(V) against t and using
linear regression to determine the slope gave an estimate for
c and, hence, for the half-life of the virus in the plasma,

namely, t1/2 = ln(2)/c. The mean for the half-life was t1/2 =
2.1 ± 0.4 days (see Ho et al14 for the complete data). The
experimentalists then assumed that the patients were in a
quasi-steady state before treatment, that is, the levels of viral
load measured in the plasma remained fairly constant. With
this assumption, and knowing the value for c and the initial
viral concentration, V0, they were able to compute the viral
production before therapy by solving P = cV. While these
results were minimal estimates, based on the assumption of a
perfect drug (with no delays), they still provided an estimate
of more than 1 billion viral particles being produced daily.
This important result was contrary to the universally held
belief that the viral dynamics during this latent period were
close to dormant. This is an excellent example of how even
simple, mathematically trivial models can be immensely
important in extracting crucial information about the disease
from patient data.

Brain Tumors: Modeling Spatiotemporal Growth and
Invasion of Gliomas

The examples we have illustrated thus far relate to the
temporal dynamics of biomedical variables, eg, PSA, lactate,
and HIV. Mathematical modeling also can be used to analyze
spatiotemporal problems. A specific example of such
modeling is in the study of the most common brain tumors,
gliomas. Because these lesions diffusely invade the local
tissue well beyond the portion of the lesion visible on
imaging, Swanson et al15,16 developed a mathematical model
to describe the growth and invasion of the tumor cells
throughout the brain parenchyma. The mathematical model
portrays the growth and extension of theoretical glioma cells
throughout the brain and assumes that only 2 factors need be
considered: net growth rate and infiltrative ability. The
model not only provides illustrations of theoretical gliomas
that closely resemble the imaging results and autopsy speci-
mens of actual patients16 but also suggests new experiments
to further elucidate gliomas.

Some Concluding Remarks

Murray et al17 in part summarized our philosophy on the
use of mathematical models in the biomedical sciences:

Why use mathematics to study something as intrinsically
complicated and ill-understood as development, tumor
growth, angiogenesis, wound healing, interacting population
dynamics, regulatory networks, marital interaction and so
on? We suggest that mathematics, rather theoretical modeling,
must be used if we ever hope to genuinely and
realistically convert an understanding of the underlying
mechanisms into a predictive science. Mathematics is required
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to bridge the gap between the level on which most of our
knowledge is accumulating (in developmental biology it is
cellular and below) and the macroscopic level of the patterns
we see. In wound healing and scar formation, for example, a
mathematical approach lets us explore the logic of the repair
process. Even if the mechanisms were well understood—and
they certainly are far from it at this stage—mathematics
would be required to explore the consequences of
manipulating the various parameters associated with any
particular scenario. In the case of such things as wound
healing—and now in angiogenesis with its relation to possible
cancer therapy—the number of options that are fast becoming
available to wound and cancer managers will become
overwhelming unless we can find a way to simulate particular
treatment protocols before applying them in practice….

The very process of constructing a mathematical model can be
useful in its own right. Not only must we commit to a
particular mechanism, but we are also forced to consider what
is truly essential to the process, the central players (variables)
and mechanisms by which they evolve. We are thus involved
in constructing frameworks on which we can hang our
understanding. The model equations, the mathematical
analysis and the numerical simulations that follow serve to
reveal quantitatively as well as qualitatively the consequences
of that logical structure.

From the Departments of 1Pathology and 2Applied Mathematics,
University of Washington, Seattle.
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